Suppr超能文献

抑制突变分析与 3D 建模相结合,解释了黏连蛋白保持和释放 DNA 的能力。

Suppressor mutation analysis combined with 3D modeling explains cohesin's capacity to hold and release DNA.

机构信息

G0 Cell Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, 904-0495 Okinawa, Japan.

Institute of Quantitative Biosciences, The University of Tokyo, 113-0032 Tokyo, Japan.

出版信息

Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4833-E4842. doi: 10.1073/pnas.1803564115. Epub 2018 May 7.

Abstract

Cohesin is a fundamental protein complex that holds sister chromatids together. Separase protease cleaves a cohesin subunit Rad21/SCC1, causing the release of cohesin from DNA to allow chromosome segregation. To understand the functional organization of cohesin, we employed next-generation whole-genome sequencing and identified numerous extragenic suppressors that overcome either inactive separase/Cut1 or defective cohesin in the fission yeast Unexpectedly, Cut1 is dispensable if suppressor mutations cause disorders of interfaces among essential cohesin subunits Psm1/SMC1, Psm3/SMC3, Rad21/SCC1, and Mis4/SCC2, the crystal structures of which suggest physical and functional impairment at the interfaces of Psm1/3 hinge, Psm1 head-Rad21, or Psm3 coiled coil-Rad21. Molecular-dynamics analysis indicates that the intermolecular β-sheets in the cohesin hinge of suppressor mutants remain intact, but a large mobility change occurs at the coiled coil bound to the hinge. In contrast, suppressors of occur in either the head ATPase domains or the Psm3 coiled coil that interacts with Rad21. Suppressors of reside in the head of Psm3/1 or the intragenic domain of Mis4. These may restore the binding of cohesin to DNA. Evidence is provided that the head and hinge of SMC subunits are proximal, and that they coordinate to form arched coils that can hold or release DNA by altering the angles made by the arched coiled coils. By combining molecular modeling with suppressor sequence analysis, we propose a cohesin structure designated the "hold-and-release" model, which may be considered as an alternative to the prevailing "ring" model.

摘要

着丝粒蛋白是一种基本的蛋白复合物,能将姐妹染色单体连接在一起。分离酶蛋白酶切割着丝粒蛋白复合物的亚基 Rad21/SCC1,导致着丝粒蛋白从 DNA 上释放,从而允许染色体分离。为了理解着丝粒蛋白的功能结构,我们采用了新一代全基因组测序,并鉴定了许多能克服无活性分离酶/Cut1 或有缺陷的着丝粒蛋白的外显子抑制子在裂殖酵母中的作用。出乎意料的是,如果抑制子突变导致必需的着丝粒蛋白亚基 Psm1/SMC1、Psm3/SMC3、Rad21/SCC1 和 Mis4/SCC2 之间的界面出现紊乱,Cut1 是可有可无的,这些亚基的晶体结构表明在 Psm1/3 铰链、Psm1 头部-Rad21 或 Psm3 卷曲螺旋-Rad21 的界面处存在物理和功能障碍。分子动力学分析表明,抑制子突变体中着丝粒蛋白铰链的分子间β-sheet 保持完整,但卷曲螺旋与铰链结合处的分子间移动性发生了很大变化。相比之下,抑制子发生在头部 ATP 酶结构域或与 Rad21 相互作用的 Psm3 卷曲螺旋中。抑制子发生在 Psm3/1 的头部或 Mis4 的内含子域中。这些可能恢复了着丝粒蛋白与 DNA 的结合。有证据表明,SMC 亚基的头部和铰链是相邻的,它们通过改变弧形卷曲螺旋形成的角度来协调形成弧形卷曲螺旋,从而可以结合或释放 DNA。通过将分子建模与抑制子序列分析相结合,我们提出了一种着丝粒蛋白结构模型,称为“保持和释放”模型,它可以被认为是替代流行的“环”模型的另一种选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dcce/6003501/9944be51f4b0/pnas.1803564115fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验