From the Department of Biophysics.
Free Radical Research Center.
J Biol Chem. 2018 Jun 29;293(26):10363-10380. doi: 10.1074/jbc.RA118.003044. Epub 2018 May 8.
Reactive oxygen and nitrogen species (ROS/RNS) such as superoxide (O), hydrogen peroxide, lipid hydroperoxides, peroxynitrite, and hypochlorous and hypobromous acids play a key role in many pathophysiological processes. Recent studies have focused on mitochondrial ROS as redox signaling species responsible for promoting cell division, modulating and regulating kinases and phosphatases, and activating transcription factors. Many ROS also stimulate cell death and senescence. The extent to which these processes occur is attributed to ROS levels (low or high) in cells. However, the exact nature of ROS remains unknown. Investigators have used redox-active probes that, upon oxidation by ROS, yield products exhibiting fluorescence, chemiluminescence, or bioluminescence. Mitochondria-targeted probes can be used to detect ROS generated in mitochondria. However, because most of these redox-active probes (untargeted and mitochondria-targeted) are oxidized by several ROS species, attributing redox probe oxidation to specific ROS species is difficult. It is conceivable that redox-active probes are oxidized in common one-electron oxidation pathways, resulting in a radical intermediate that either reacts with another oxidant (including oxygen to produce O) and forms a stable fluorescent product or reacts with O to form a fluorescent marker product. Here, we propose the use of multiple probes and complementary techniques (HPLC, LC-MS, redox blotting, and EPR) and the measurement of intracellular probe uptake and specific marker products to identify specific ROS generated in cells. The low-temperature EPR technique developed to investigate cellular/mitochondrial oxidants can easily be extended to animal and human tissues.
活性氧和氮物种(ROS/RNS),如超氧阴离子(O)、过氧化氢、脂质过氧化物、过氧亚硝酸盐、次氯酸和次溴酸,在许多病理生理过程中发挥关键作用。最近的研究集中在作为氧化还原信号物种的线粒体 ROS,其负责促进细胞分裂、调节和调节激酶和磷酸酶,并激活转录因子。许多 ROS 还刺激细胞死亡和衰老。这些过程发生的程度归因于细胞内的 ROS 水平(低或高)。然而,ROS 的确切性质仍然未知。研究人员使用了氧化还原活性探针,这些探针在被 ROS 氧化后,会产生具有荧光、化学发光或生物发光的产物。线粒体靶向探针可用于检测线粒体中产生的 ROS。然而,由于大多数这些氧化还原活性探针(非靶向和线粒体靶向)被几种 ROS 物种氧化,因此很难将氧化还原探针的氧化归因于特定的 ROS 物种。可以想象,氧化还原活性探针在常见的单电子氧化途径中被氧化,生成自由基中间体,该中间体要么与另一种氧化剂(包括氧气产生 O)反应并形成稳定的荧光产物,要么与 O 反应形成荧光标记产物。在这里,我们建议使用多种探针和互补技术(HPLC、LC-MS、氧化还原印迹和 EPR)以及测量细胞内探针摄取和特定标记产物,以鉴定细胞中产生的特定 ROS。为研究细胞/线粒体氧化剂而开发的低温 EPR 技术可以很容易地扩展到动物和人体组织。
Free Radic Biol Med. 2014-10-29
Int J Biochem Cell Biol. 2005-12
CNS Neurosci Ther. 2025-4
Redox Biochem Chem. 2024-12
Antioxidants (Basel). 2024-7-22
Antioxidants (Basel). 2024-3-5
Antioxid Redox Signal. 2017-12-14