School of Computer Science and Center for Intelligent Machines, McGill University, Montréal, Canada.
Department of Mathematics and Statistics, McGill University, Montréal, Canada.
Sci Rep. 2018 May 8;8(1):7165. doi: 10.1038/s41598-018-25334-7.
The mammalian heart must function as an efficient pump while simultaneously conducting electrical signals to drive the contraction process. In the ventricles, electrical activation begins at the insertion points of the Purkinje network in the endocardium. How does the diffusion component of the subsequent excitation wave propagate from the endocardium in a healthy heart wall without creating directional biases? We show that this is a consequence of the particular geometric organization of myocytes in the heart wall. Using a generalized helicoid to model fiber orientation, we treat the myocardium as a curved space via Riemannian geometry, and then use stochastic calculus to model local signal diffusion. Our analysis shows that the helicoidal arrangement of myocytes minimizes the directional biases that could lead to aberrant propagation, thereby explaining how electrophysiological principles are consistent with local measurements of cardiac fiber geometry. We discuss our results in the context of the need to balance electrical and mechanical requirements for heart function.
哺乳动物的心脏必须作为一个高效的泵同时传导电信号来驱动收缩过程。在心室中,电激活从心内膜的浦肯野网络插入点开始。在健康的心脏壁中,后续兴奋波的扩散分量如何从心内膜传播而不产生方向偏差?我们表明,这是心脏壁中心肌细胞特定几何组织的结果。使用广义螺旋线来模拟纤维方向,我们通过黎曼几何将心肌处理为弯曲空间,然后使用随机微积分来模拟局部信号扩散。我们的分析表明,心肌细胞的螺旋排列将导致异常传播的方向偏差最小化,从而解释了电生理学原理如何与心脏纤维几何的局部测量结果一致。我们将我们的结果讨论放在需要平衡心脏功能的电和机械要求的背景下。