Suppr超能文献

运用计算进化推进基于肽的生物传感器生物识别元件。

Advancing Peptide-Based Biorecognition Elements for Biosensors Using in-Silico Evolution.

机构信息

Department of Chemical and Biomolecular Engineering , North Carolina State University , Raleigh , North Carolina 27695 , United States.

Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering , Washington University in St. Louis , St. Louis , Missouri 63130 , United States.

出版信息

ACS Sens. 2018 May 25;3(5):1024-1031. doi: 10.1021/acssensors.8b00159. Epub 2018 May 16.

Abstract

Sensors for human health and performance monitoring require biological recognition elements (BREs) at device interfaces for the detection of key molecular biomarkers that are measurable biological state indicators. BREs, including peptides, antibodies, and nucleic acids, bind to biomarkers in the vicinity of the sensor surface to create a signal proportional to the biomarker concentration. The discovery of BREs with the required sensitivity and selectivity to bind biomarkers at low concentrations remains a fundamental challenge. In this study, we describe an in-silico approach to evolve higher sensitivity peptide-based BREs for the detection of cardiac event marker protein troponin I (cTnI) from a previously identified BRE as the parental affinity peptide. The P2 affinity peptide, evolved using our in-silico method, was found to have ∼16-fold higher affinity compared to the parent BRE and ∼10 fM (0.23 pg/mL) limit of detection. The approach described here can be applied towards designing BREs for other biomarkers for human health monitoring.

摘要

用于人体健康和性能监测的传感器需要在设备接口处具有生物识别元件 (BRE),以便检测可测量的生物状态指标的关键分子生物标志物。BRE 包括肽、抗体和核酸,它们与传感器表面附近的生物标志物结合,以产生与生物标志物浓度成正比的信号。发现具有在低浓度下结合生物标志物所需的灵敏度和选择性的 BRE 仍然是一个基本挑战。在这项研究中,我们描述了一种从头开始的方法,使用我们的计算方法从先前鉴定的 BRE 中进化出基于肽的更高灵敏度的 BRE,作为亲本亲和肽来检测心脏事件标志物蛋白肌钙蛋白 I (cTnI)。与亲本 BRE 相比,使用我们的计算方法进化出的 P2 亲和肽的亲和力高约 16 倍,检测限约为 10 fM(0.23 pg/mL)。这里描述的方法可用于设计用于人体健康监测的其他生物标志物的 BRE。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验