Suppr超能文献

序列模式与特征:淀粉样蛋白形成肽的计算与实验发现

Sequence patterns and signatures: Computational and experimental discovery of amyloid-forming peptides.

作者信息

Xiao Xingqing, Robang Alicia S, Sarma Sudeep, Le Justin V, Helmicki Michael E, Lambert Matthew J, Guerrero-Ferreira Ricardo, Arboleda-Echavarria Johana, Paravastu Anant K, Hall Carol K

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.

Department of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

PNAS Nexus. 2022 Nov 25;1(5):pgac263. doi: 10.1093/pnasnexus/pgac263. eCollection 2022 Nov.

Abstract

Screening amino acid sequence space via experiments to discover peptides that self-assemble into amyloid fibrils is challenging. We have developed a computational tide embly sign (PepAD) algorithm that enables the discovery of amyloid-forming peptides. Discontinuous molecular dynamics (DMD) simulation with the PRIME20 force field combined with the FoldAmyloid tool is used to examine the fibrilization kinetics of PepAD-generated peptides. PepAD screening of ∼10,000 7-mer peptides resulted in twelve top-scoring peptides with two distinct hydration properties. Our studies revealed that eight of the twelve discovered peptides spontaneously form amyloid fibrils in the DMD simulations and that all eight have at least five residues that the FoldAmyloid tool classifies as being aggregation-prone. Based on these observations, we re-examined the PepAD-generated peptides in the sequence pool returned by PepAD and extracted five sequence patterns as well as associated sequence signatures for the 7-mer amyloid-forming peptides. Experimental results from Fourier transform infrared spectroscopy (FTIR), thioflavin T (ThT) fluorescence, circular dichroism (CD), and transmission electron microscopy (TEM) indicate that all the peptides predicted to assemble assemble into antiparallel β-sheet nanofibers in a concentration-dependent manner. This is the first attempt to use a computational approach to search for amyloid-forming peptides based on customized settings. Our efforts facilitate the identification of β-sheet-based self-assembling peptides, and contribute insights towards answering a fundamental scientific question: "".

摘要

通过实验筛选氨基酸序列空间以发现能自组装成淀粉样纤维的肽具有挑战性。我们开发了一种计算性的组装信号(PepAD)算法,可用于发现形成淀粉样蛋白的肽。使用带有PRIME20力场的非连续分子动力学(DMD)模拟结合FoldAmyloid工具来研究PepAD生成的肽的纤维化动力学。对约10,000个七肽进行PepAD筛选,得到了十二个得分最高的肽,它们具有两种不同的水合特性。我们的研究表明,在DMD模拟中,这十二个发现的肽中有八个能自发形成淀粉样纤维,并且所有这八个肽至少有五个残基被FoldAmyloid工具归类为易于聚集。基于这些观察结果,我们重新检查了PepAD返回的序列库中PepAD生成的肽,并提取了五种序列模式以及七肽形成淀粉样蛋白的肽的相关序列特征。傅里叶变换红外光谱(FTIR)、硫黄素T(ThT)荧光、圆二色性(CD)和透射电子显微镜(TEM)的实验结果表明,所有预测会组装的肽都以浓度依赖的方式组装成反平行β-折叠纳米纤维。这是首次尝试使用计算方法基于定制设置来搜索形成淀粉样蛋白的肽。我们的工作有助于识别基于β-折叠的自组装肽,并为回答一个基本科学问题提供见解:“”

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a90/9802472/217a10da3323/pgac263fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验