Suppr超能文献

阻塞性睡眠呼吸暂停患者的通气控制敏感性与睡眠阶段有关。

Ventilatory control sensitivity in patients with obstructive sleep apnea is sleep stage dependent.

机构信息

Sleep and Circadian Medicine Laboratory, Department of Physiology, Monash University, Melbourne, VIC, Australia.

School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Melbourne, VIC, Australia.

出版信息

Sleep. 2018 May 1;41(5). doi: 10.1093/sleep/zsy040.

Abstract

STUDY OBJECTIVES

The severity of obstructive sleep apnea (OSA) is known to vary according to sleep stage; however, the pathophysiology responsible for this robust observation is incompletely understood. The objective of the present work was to examine how ventilatory control system sensitivity (i.e. loop gain) varies during sleep in patients with OSA.

METHODS

Loop gain was estimated using signals collected from standard diagnostic polysomnographic recordings performed in 44 patients with OSA. Loop gain measurements associated with nonrapid eye movement (NREM) stage 2 (N2), stage 3 (N3), and REM sleep were calculated and compared. The sleep period was also split into three equal duration tertiles to investigate how loop gain changes over the course of sleep.

RESULTS

Loop gain was significantly lower (i.e. ventilatory control more stable) in REM (Mean ± SEM: 0.51 ± 0.04) compared with N2 sleep (0.63 ± 0.04; p = 0.001). Differences in loop gain between REM and N3 (p = 0.095), and N2 and N3 (p = 0.247) sleep were not significant. Furthermore, N2 loop gain was significantly lower in the first third (0.57 ± 0.03) of the sleep period compared with later second (0.64 ± 0.03, p = 0.012) and third (0.64 ± 0.03, p = 0.015) tertiles. REM loop gain also tended to increase across the night; however, this trend was not statistically significant [F(2, 12) = 3.49, p = 0.09].

CONCLUSIONS

These data suggest that loop gain varies between REM and NREM sleep and modestly increases over the course of sleep. Lower loop gain in REM is unlikely to contribute to the worsened OSA severity typically observed in REM sleep, but may explain the reduced propensity for central sleep apnea in this sleep stage.

摘要

研究目的

已知阻塞性睡眠呼吸暂停(OSA)的严重程度会随睡眠阶段而变化;然而,导致这种显著观察结果的病理生理学机制尚不完全清楚。本研究旨在探讨 OSA 患者睡眠期间呼吸控制系统敏感性(即环路增益)如何变化。

方法

使用 44 例 OSA 患者标准诊断性多导睡眠图记录中收集的信号来估计环路增益。计算并比较与非快速眼动(NREM)睡眠阶段 2(N2)、阶段 3(N3)和 REM 睡眠相关的环路增益测量值。还将睡眠期分为三个相等持续时间的三分位,以研究环路增益在睡眠过程中的变化。

结果

与 N2 睡眠(0.63 ± 0.04;p = 0.001)相比,REM 睡眠时环路增益显著降低(即通气控制更稳定)(平均值 ± SEM:0.51 ± 0.04)。REM 与 N3 之间(p = 0.095)以及 N2 与 N3 之间(p = 0.247)的环路增益差异无统计学意义。此外,N2 睡眠的第一三分位(0.57 ± 0.03)的环路增益明显低于后两个三分位(0.64 ± 0.03,p = 0.012)和第三个三分位(0.64 ± 0.03,p = 0.015)。尽管 REM 睡眠时的环路增益也有随夜间增加的趋势,但这种趋势无统计学意义[F(2, 12) = 3.49,p = 0.09]。

结论

这些数据表明,环路增益在 REM 和 NREM 睡眠之间变化,并且在睡眠过程中适度增加。REM 中的低环路增益不太可能导致 REM 睡眠中通常观察到的 OSA 严重程度恶化,但可能解释了该睡眠阶段中枢性睡眠呼吸暂停发生率降低的原因。

相似文献

3
Assessing the Physiologic Endotypes Responsible for REM- and NREM-Based OSA.
Chest. 2021 May;159(5):1998-2007. doi: 10.1016/j.chest.2020.10.080. Epub 2020 Nov 14.
7
Nonrapid Eye Movement-Predominant Obstructive Sleep Apnea: Detection and Mechanism.
J Clin Sleep Med. 2015 Sep 15;11(9):987-93. doi: 10.5664/jcsm.5010.
9
Gender and age influence the effects of slow-wave sleep on respiration in patients with obstructive sleep apnea.
Sleep Breath. 2013 Mar;17(1):51-6. doi: 10.1007/s11325-011-0644-4. Epub 2012 Jan 16.
10
Gender differences in the polysomnographic features of obstructive sleep apnea.
Am J Respir Crit Care Med. 2000 May;161(5):1465-72. doi: 10.1164/ajrccm.161.5.9904121.

引用本文的文献

2
Association of Hypoxemia Due to Obstructive Sleep Apnea With White Matter Hyperintensities and Temporal Lobe Changes in Older Adults.
Neurology. 2025 Jun 10;104(11):e213639. doi: 10.1212/WNL.0000000000213639. Epub 2025 May 7.
5
Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome.
Signal Transduct Target Ther. 2023 May 25;8(1):218. doi: 10.1038/s41392-023-01496-3.
10
Night-to-Night Variability of Polysomnography-Derived Physiologic Endotypic Traits in Patients With Moderate to Severe OSA.
Chest. 2023 May;163(5):1266-1278. doi: 10.1016/j.chest.2022.12.029. Epub 2023 Jan 4.

本文引用的文献

1
3
Impact of arousal threshold and respiratory effort on the duration of breathing events across sleep stage and time of night.
Respir Physiol Neurobiol. 2017 Mar;237:35-41. doi: 10.1016/j.resp.2016.12.009. Epub 2016 Dec 28.
4
Pathogenesis of central and complex sleep apnoea.
Respirology. 2017 Jan;22(1):43-52. doi: 10.1111/resp.12927. Epub 2016 Oct 31.
5
Control theory prediction of resolved Cheyne-Stokes respiration in heart failure.
Eur Respir J. 2016 Nov;48(5):1351-1359. doi: 10.1183/13993003.00615-2016. Epub 2016 Sep 1.
7
The role of high loop gain induced by intermittent hypoxia in the pathophysiology of obstructive sleep apnoea.
Sleep Med Rev. 2015 Aug;22:3-14. doi: 10.1016/j.smrv.2014.10.003. Epub 2014 Oct 15.
8
Quantifying the ventilatory control contribution to sleep apnoea using polysomnography.
Eur Respir J. 2015 Feb;45(2):408-18. doi: 10.1183/09031936.00062914. Epub 2014 Oct 16.
9
Clinical predictors of the respiratory arousal threshold in patients with obstructive sleep apnea.
Am J Respir Crit Care Med. 2014 Dec 1;190(11):1293-300. doi: 10.1164/rccm.201404-0718OC.
10
Time of day affects chemoreflex sensitivity and the carbon dioxide reserve during NREM sleep in participants with sleep apnea.
J Appl Physiol (1985). 2014 Nov 15;117(10):1149-56. doi: 10.1152/japplphysiol.00681.2014. Epub 2014 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验