The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA.
Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.
J Virol. 2018 Jul 17;92(15). doi: 10.1128/JVI.00621-18. Print 2018 Aug 1.
The respiratory syncytial virus (RSV) fusion (F) protein is a trimeric, membrane-anchored glycoprotein capable of mediating both virus-target cell membrane fusion to initiate infection and cell-cell fusion, even in the absence of the attachment glycoprotein. The F protein is initially expressed in a precursor form, whose functional capabilities are activated by proteolysis at two sites between the F and F subunits. This cleavage results in expression of the metastable and high-energy prefusion conformation. To mediate fusion, the F protein is triggered by an unknown stimulus, causing the F subunit to refold dramatically while F changes minimally. Hypothesizing that the most likely site for interaction with a target cell component would be the top, or apex, of the protein, we determined the importance of the residues in the apical loop of F by alanine scanning mutagenesis analysis. Five residues were not important, two were of intermediate importance, and all four lysines and one isoleucine were essential. Alanine replacement did not result in the loss of the pre-F conformation for any of these mutants. Each of the four lysines required its specific charge for fusion function. Alanine replacement of the three essential lysines on the ascent to the apex hindered fusion following a forced fusion event, suggesting that these residues are involved in refolding. Alanine mutations at Ile64, also on the ascent to the apex, and Lys75 did not prevent fusion following forced triggering, suggesting that these residues are not involved in refolding and may instead be involved in the natural triggering of the F protein. RSV infects virtually every child by the age of 3 years, causing nearly 33 million acute lower respiratory tract infections (ALRI) worldwide each year in children younger than 5 years of age (H. Nair et al., Lancet 375:1545-1555, 2010). RSV is also the second leading cause of respiratory system-related death in the elderly (A. R. Falsey and E. E. Walsh, Drugs Aging 22:577-587, 2005; A. R. Falsey, P. A. Hennessey, M. A. Formica, C. Cox, and E. E. Walsh, N Engl J Med 352:1749-1759, 2005). The monoclonal antibody palivizumab is approved for prophylactic use in some at-risk infants, but healthy infants remain unprotected. Furthermore, its expense limits its use primarily to developed countries. No vaccine or effective small-molecule drug is approved for preventing disease or treating infection (H. M. Costello, W. Ray, S. Chaiwatpongsakorn, and M. E. Peeples, Infect Disord Drug Targets, 12:110-128, 2012). The essential residues identified in the apical domain of F are adjacent to the apical portion of F, which, upon triggering, refolds into a long heptad repeat A (HRA) structure with the fusion peptide at its N terminus. These essential residues in F are likely involved in triggering and/or refolding of the F protein and, as such, may be ideal targets for antiviral drug development.
呼吸道合胞病毒(RSV)融合(F)蛋白是一种三聚体、膜锚定糖蛋白,能够介导病毒-靶细胞膜融合以启动感染和细胞-细胞融合,即使在没有附着糖蛋白的情况下也是如此。F 蛋白最初以前体形式表达,其功能能力通过 F 和 F 亚基之间的两个位点的蛋白水解激活。这种切割导致表达亚稳定和高能的预融合构象。为了介导融合,F 蛋白被未知刺激触发,导致 F 亚基剧烈重折叠,而 F 变化最小。假设与靶细胞成分相互作用的最可能部位是蛋白质的顶部或顶点,我们通过丙氨酸扫描诱变分析确定了 F 中顶端环中的残基的重要性。五个残基不重要,两个残基处于中间重要性,四个赖氨酸和一个异亮氨酸都是必需的。对于任何这些突变体,丙氨酸取代都不会导致前 F 构象的丧失。融合功能所需的四个赖氨酸都需要其特定的电荷。在强制融合事件之后,顶点上升处的三个必需赖氨酸的丙氨酸取代阻碍了融合,这表明这些残基参与了重折叠。顶点上升处的异亮氨酸 64 和赖氨酸 75 的丙氨酸突变并没有阻止强制触发后的融合,这表明这些残基不参与重折叠,而是可能参与 F 蛋白的自然触发。RSV 几乎感染了所有 3 岁以下的儿童,每年导致全世界 5 岁以下儿童出现近 3300 万例急性下呼吸道感染(ALRI)(H. Nair 等人,《柳叶刀》375:1545-1555,2010 年)。RSV 也是老年人与呼吸系统相关死亡的第二大原因(A. R. Falsey 和 E. E. Walsh,《药物衰老》22:577-587,2005 年;A. R. Falsey、P. A. Hennessey、M. A. Formica、C. Cox 和 E. E. Walsh,《新英格兰医学杂志》352:1749-1759,2005 年)。单克隆抗体 palivizumab 被批准用于某些高危婴儿的预防性使用,但健康婴儿仍未得到保护。此外,其费用限制了它主要在发达国家的使用。目前尚无疫苗或有效的小分子药物可用于预防疾病或治疗感染(H. M. Costello、W. Ray、S. Chaiwatpongsakorn 和 M. E. Peeples,《传染病与药物靶点》,12:110-128,2012 年)。在 F 的顶端结构域中确定的必需残基与 F 的顶端部分相邻,F 触发后,该顶端部分折叠成带有 N 端融合肽的长七肽重复 A(HRA)结构。F 中的这些必需残基可能参与 F 蛋白的触发和/或重折叠,因此可能是抗病毒药物开发的理想靶点。