Yurtoglu Mete, Carton Molly, Storti Duane
Google, 747 6th Street South, Kirkland, WA 98033 e-mail:
Mechanical Engineering, University of Washington, Seattle, WA 98195-2600 e-mail:
J Comput Inf Sci Eng. 2018 Jun;18(2):0210131-210139. doi: 10.1115/1.4039639. Epub 2018 Apr 26.
We present a unified method for numerical evaluation of volume, surface, and path integrals of smooth, bounded functions on implicitly defined bounded domains. The method avoids both the stochastic nature (and slow convergence) of Monte Carlo methods and problem-specific domain decompositions required by most traditional numerical integration techniques. Our approach operates on a uniform grid over an axis-aligned box containing the region of interest, so we refer to it as a grid-based method. All grid-based integrals are computed as a sum of contributions from a stencil computation on the grid points. Each class of integrals (path, surface, or volume) involves a different stencil formulation, but grid-based integrals of a given class can be evaluated by applying the same stencil on the same set of grid points; only the data on the grid points changes. When functions are defined over the continuous domain so that grid refinement is possible, grid-based integration is supported by a convergence proof based on wavelet analysis. Given the foundation of function values on a uniform grid, grid-based integration methods apply directly to data produced by volumetric imaging (including computed tomography and magnetic resonance), direct numerical simulation of fluid flow, or any other method that produces data corresponding to values of a function sampled on a regular grid. Every step of a grid-based integral computation (including evaluating a function on a grid, application of stencils on a grid, and reduction of the contributions from the grid points to a single sum) is well suited for parallelization. We present results from a parallelized CUDA implementation of grid-based integrals that faithfully reproduces the output of a serial implementation but with significant reductions in computing time. We also present example grid-based integral results to quantify convergence rates associated with grid refinement and dependence of the convergence rate on the specific choice of difference stencil (corresponding to a particular genus of Daubechies wavelet).
我们提出了一种统一的方法,用于对隐式定义的有界域上的光滑有界函数进行体积、表面积和路径积分的数值评估。该方法既避免了蒙特卡罗方法的随机性(以及收敛速度慢的问题),也避免了大多数传统数值积分技术所需的特定于问题的域分解。我们的方法在包含感兴趣区域的轴对齐框上的均匀网格上运行,因此我们将其称为基于网格的方法。所有基于网格的积分都作为网格点上模板计算的贡献之和来计算。每类积分(路径、表面积或体积)都涉及不同的模板公式,但给定类别的基于网格的积分可以通过在同一组网格点上应用相同的模板来评估;只是网格点上的数据会发生变化。当函数在连续域上定义以便可以进行网格细化时,基于网格的积分由基于小波分析的收敛证明支持。基于均匀网格上的函数值基础,基于网格的积分方法直接适用于体积成像(包括计算机断层扫描和磁共振成像)产生的数据、流体流动的直接数值模拟或任何其他产生与在规则网格上采样的函数值相对应的数据的方法。基于网格的积分计算的每一步(包括在网格上评估函数、在网格上应用模板以及将网格点的贡献归约为单个总和)都非常适合并行化。我们展示了基于网格的积分的并行化CUDA实现的结果,该实现忠实地再现了串行实现的输出,但计算时间大幅减少。我们还展示了基于网格的积分的示例结果,以量化与网格细化相关的收敛速度以及收敛速度对差分模板(对应于特定类别的Daubechies小波)的特定选择的依赖性。