Univ. Grenoble Alpes , CNRS, Grenoble INP, LMGP , 38000 Grenoble , France.
Department of Physics , University of Peshawar , 25120 Peshawar , Pakistan.
ACS Appl Mater Interfaces. 2018 Jun 6;10(22):19208-19217. doi: 10.1021/acsami.8b03079. Epub 2018 May 25.
Silver nanowire (AgNW) networks offer excellent electrical and optical properties and have emerged as one of the most attractive alternatives to transparent conductive oxides to be used in flexible optoelectronic applications. However, AgNW networks still suffer from chemical, thermal, and electrical instabilities, which in some cases can hinder their efficient integration as transparent electrodes in devices such as solar cells, transparent heaters, touch screens, and organic light emitting diodes. We have used atmospheric pressure spatial atomic layer deposition (AP-SALD) to fabricate hybrid transparent electrode materials in which the AgNW network is protected by a conformal thin layer of zinc oxide. The choice of AP-SALD allows us to maintain the low-cost and scalable processing of AgNW-based transparent electrodes. The effects of the ZnO coating thickness on the physical properties of AgNW networks are presented. The composite electrodes show a drastic enhancement of both thermal and electrical stabilities. We found that bare AgNWs were stable only up to 300 °C when subjected to thermal ramps, whereas the ZnO coating improved the stability up to 500 °C. Similarly, ZnO-coated AgNWs exhibited an increase of 100% in electrical stability with respect to bare networks, withstanding up to 18 V. A simple physical model shows that the origin of the stability improvement is the result of hindered silver atomic diffusion thanks to the presence of the thin oxide layer and the quality of the interfaces of hybrid electrodes. The effects of ZnO coating on both the network adhesion and optical transparency are also discussed. Finally, we show that the AP-SALD ZnO-coated AgNW networks can be effectively used as very stable transparent heaters.
银纳米线(AgNW)网络具有优异的电学和光学性能,已成为替代透明导电氧化物(TCOs)的最有吸引力的材料之一,可用于柔性光电应用。然而,AgNW 网络仍然存在化学、热和电不稳定的问题,在某些情况下,这可能会阻碍它们作为透明电极在太阳能电池、透明加热器、触摸屏和有机发光二极管等器件中的有效集成。我们使用常压空间原子层沉积(AP-SALD)来制备混合透明电极材料,其中 AgNW 网络由一层薄的氧化锌保护层。选择 AP-SALD 允许我们保持基于 AgNW 的透明电极的低成本和可扩展处理。介绍了氧化锌涂层厚度对 AgNW 网络物理性能的影响。复合电极表现出热稳定性和电稳定性的显著增强。我们发现,裸 AgNW 在经受热斜坡时仅在 300°C 以下稳定,而氧化锌涂层将稳定性提高到 500°C。类似地,与裸网络相比,ZnO 涂层的 AgNW 表现出电稳定性提高了 100%,可承受高达 18V 的电压。一个简单的物理模型表明,稳定性提高的原因是由于存在薄的氧化层和混合电极的界面质量,阻止了银原子的扩散。还讨论了 ZnO 涂层对网络附着力和光学透明度的影响。最后,我们展示了 AP-SALD ZnO 涂层的 AgNW 网络可用作非常稳定的透明加热器。