Yang Jianmin, Chang Li, Zhang Xiqi, Cao Ziquan, Jiang Lei
Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
Nanomicro Lett. 2024 Mar 4;16(1):140. doi: 10.1007/s40820-024-01333-4.
The controlled assembly of nanomaterials has demonstrated significant potential in advancing technological devices. However, achieving highly efficient and low-loss assembly technique for nanomaterials, enabling the creation of hierarchical structures with distinctive functionalities, remains a formidable challenge. Here, we present a method for nanomaterial assembly enhanced by ionic liquids, which enables the fabrication of highly stable, flexible, and transparent electrodes featuring an organized layered structure. The utilization of hydrophobic and nonvolatile ionic liquids facilitates the production of stable interfaces with water, effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface. Furthermore, the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior, enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film. The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4 Ω sq and 93% transmittance, but also showcases remarkable environmental stability and mechanical flexibility. Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices. This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.
纳米材料的可控组装在推动技术设备发展方面已展现出巨大潜力。然而,实现用于纳米材料的高效低损耗组装技术,以创建具有独特功能的分层结构,仍然是一项艰巨的挑战。在此,我们提出一种通过离子液体增强的纳米材料组装方法,该方法能够制造出具有有序层状结构的高度稳定、灵活且透明的电极。疏水性和非挥发性离子液体的使用有助于与水形成稳定界面,有效防止在界面处组装的一维/二维纳米材料发生沉降。此外,界面组装的纳米材料单层表现出交替的自爬升行为,能够实现逐层转移并形成有序的MXene包裹银纳米线网络薄膜。所得复合薄膜不仅具有9.4Ω/sq的方阻和93%的透过率,展现出优异的光电性能,还具有出色的环境稳定性和机械柔韧性。特别值得注意的是其在透明电磁干扰屏蔽材料和摩擦纳米发电机设备中的应用。这项研究引入了一种基于有序纳米材料制造和定制功能器件的创新方法。