Suppr超能文献

将离子淌度与低温光谱相结合,用于生物分子离子的结构和分析研究。

Combining Ion Mobility and Cryogenic Spectroscopy for Structural and Analytical Studies of Biomolecular Ions.

机构信息

Laboratoire de Chimie Physique Moléculaire , École Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCPM , Station 6 , CH-1015 Lausanne , Switzerland.

出版信息

Acc Chem Res. 2018 Jun 19;51(6):1487-1495. doi: 10.1021/acs.accounts.8b00133. Epub 2018 May 10.

Abstract

Ion mobility spectrometry (IMS) has become a valuable tool in biophysical and bioanalytical chemistry because of its ability to separate and characterize the structure of gas-phase biomolecular ions on the basis of their collisional cross section (CCS). Its importance has grown with the realization that in many cases, biomolecular ions retain important structural characteristics when produced in the gas phase by electrospray ionization (ESI). While a CCS can help distinguish between structures of radically different types, one cannot expect a single number to differentiate similar conformations of a complex molecule. Molecular spectroscopy has also played an increasingly important role for structural characterization of biomolecular ions. Spectroscopic measurements, particularly when performed at cryogenic temperatures, can be extremely sensitive to small changes in a molecule's conformation and provide tight constraints for calculations of biomolecular structures. However, spectra of complex molecules can be heavily congested due to the presence of multiple stable conformations, each of which can have a distinct spectrum. This congestion can inhibit spectral analysis and complicate the extraction of structural information. Even when a single conformation is present, the conformational search process needed to match a measured spectrum with a computed structure can be overwhelming for peptides of more than a few amino acids, for example. We have recently combined ion mobility spectrometry and cryogenic ion spectroscopy (CIS) to characterize the structures of gas-phase biomolecular ions. In this Account, we illustrate how the coupling of IMS and CIS is by nature synergistic. On the one hand, IMS can be used as a conformational filter to reduce spectral congestion that arises from heterogeneous samples, facilitating structural analysis. On the other hand, highly resolved, cryogenic spectra can serve as a selective detector for IMS that can increase the effective resolution and hence the maximum number of distinct species that can be detected. Taken together, spectra and CCS measurements on the same system facilitates structural analysis and strengthens the conclusions that can be drawn from each type of data. After describing different approaches to combining these two techniques in such a way as to simplify the data obtained from each one separately, we present two examples that illustrate the type of insight gained from using spectra and CCS data together for characterizing gas-phase biomolecular ions. In one example, the CCS is used as a constraint for quantum chemical structure calculations of kinetically trapped species, where a lowest-energy criterion is not applicable. In a second example, we use both the CCS and a cryogenic infrared spectrum as a means to distinguish isomeric glycans.

摘要

离子淌度谱(IMS)因其能够根据其碰撞截面(CCS)分离和表征气相生物分子离子的结构而成为生物物理和生物分析化学中的一种有价值的工具。随着人们认识到,在许多情况下,通过电喷雾电离(ESI)在气相中产生的生物分子离子保留了重要的结构特征,其重要性不断提高。虽然 CCS 有助于区分截然不同类型的结构,但不能期望一个单一的数字可以区分复杂分子的相似构象。分子光谱学也在生物分子离子的结构表征方面发挥了越来越重要的作用。光谱测量,特别是在低温下进行时,对分子构象的微小变化非常敏感,并为生物分子结构的计算提供严格的约束。然而,由于存在多个稳定构象,复杂分子的光谱可能会严重拥挤,每个构象都可能具有独特的光谱。这种拥挤会抑制光谱分析并使结构信息的提取复杂化。即使存在单个构象,对于例如超过几个氨基酸的肽,与测量的光谱与计算的结构匹配所需的构象搜索过程也可能令人难以承受。我们最近将离子淌度谱和低温离子光谱(CIS)结合起来,用于表征气相生物分子离子的结构。在本报告中,我们说明了 IMS 和 CIS 的耦合如何在本质上是协同的。一方面,IMS 可用作构象滤波器,以减少异质样品中产生的光谱拥挤,从而促进结构分析。另一方面,高分辨率的低温光谱可以作为 IMS 的选择性探测器,从而提高有效分辨率,从而可以检测到更多不同的物种。总的来说,同一系统上的光谱和 CCS 测量有助于结构分析,并增强了从每种类型的数据中得出的结论。在描述了以简化从每种技术分别获得的数据的方式将这两种技术结合在一起的不同方法之后,我们提出了两个示例,说明了一起使用光谱和 CCS 数据来表征气相生物分子离子的类型的见解。在一个示例中,CCS 被用作动力学捕获物种的量子化学结构计算的约束条件,其中不适用于最低能量标准。在第二个示例中,我们同时使用 CCS 和低温红外光谱来区分异构聚糖。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验