Suppr超能文献

社交媒体中的大数据分析:饮食失调论坛的文本和网络分析。

Analyzing big data in social media: Text and network analyses of an eating disorder forum.

机构信息

Center for Psychotherapy Research, University Hospital Heidelberg, Heidelberg, Germany.

Department of Psychology, University of Zurich, Zurich, Switzerland.

出版信息

Int J Eat Disord. 2018 Jul;51(7):656-667. doi: 10.1002/eat.22878. Epub 2018 May 10.

Abstract

OBJECTIVE

Social media plays an important role in everyday life of young people. Numerous studies claim negative effects of social media and media in general on eating disorder risk factors. Despite the availability of big data, only few studies have exploited the possibilities so far in the field of eating disorders.

METHOD

Methods for data extraction, computerized content analysis, and network analysis will be introduced. Strategies and methods will be exemplified for an ad-hoc dataset of 4,247 posts and 34,118 comments by 3,029 users of the proed forum on Reddit.

RESULTS

Text analysis with latent Dirichlet allocation identified nine topics related to social support and eating disorder specific content. Social network analysis describes the overall communication patterns, and could identify community structures and most influential users. A linear network autocorrelation model was applied to estimate associations in language among network neighbors. The supplement contains R code for data extraction and analyses.

DISCUSSION

This paper provides an introduction to investigating social media data, and will hopefully stimulate big data social media research in eating disorders. When applied in real-time, the methods presented in this manuscript could contribute to improving the safety of ED-related online communication.

摘要

目的

社交媒体在年轻人的日常生活中扮演着重要的角色。许多研究声称社交媒体和媒体对饮食障碍风险因素有负面影响。尽管有大数据,但迄今为止,只有少数研究在饮食障碍领域利用了这些可能性。

方法

将介绍数据提取、计算机内容分析和网络分析的方法。将举例说明用于 Reddit 上 proed 论坛的 4,247 个帖子和 34,118 条评论的 3,029 个用户的特定数据集的策略和方法。

结果

使用潜在狄利克雷分配的文本分析确定了与社会支持和饮食障碍特定内容相关的九个主题。社会网络分析描述了整体的沟通模式,并能够识别社区结构和最有影响力的用户。应用线性网络自相关模型来估计网络邻居之间语言的关联。补充材料包含用于数据提取和分析的 R 代码。

讨论

本文介绍了调查社交媒体数据的方法,并希望能激发饮食障碍中大社交媒体数据研究。当实时应用时,本文提出的方法可以有助于提高 ED 相关在线交流的安全性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验