Suppr超能文献

探索有情绪化进食行为的网络用户的异常行为模式:主题建模研究。

Exploring Abnormal Behavior Patterns of Online Users With Emotional Eating Behavior: Topic Modeling Study.

作者信息

Hwang Youjin, Kim Hyung Jun, Choi Hyung Jin, Lee Joonhwan

机构信息

Human Computer Interaction & Design Lab, Seoul National University, Seoul, Republic of Korea.

Functional Anatomy of Metabolism Regulation Lab, Seoul National University College of Medicine, Seoul, Republic of Korea.

出版信息

J Med Internet Res. 2020 Mar 31;22(3):e15700. doi: 10.2196/15700.

Abstract

BACKGROUND

Emotional eating (EE) is one of the most significant symptoms of various eating disorders. It has been difficult to collect a large amount of behavioral data on EE; therefore, only partial studies of this symptom have been conducted. To provide adequate support for online social media users with symptoms of EE, we must understand their behavior patterns to design a sophisticated personalized support system (PSS).

OBJECTIVE

This study aimed to analyze the behavior patterns of emotional eaters as the first step to designing a personalized intervention system.

METHODS

The machine learning (ML) framework and Latent Dirichlet Allocation (LDA) topic modeling tool were used to collect and analyze behavioral data on EE. Data from a subcommunity of Reddit, /r/loseit, were analyzed. This dataset included all posts and feedback from July 2014 to May 2018, comprising 185,950 posts and 3,528,107 comments. In addition, deleted and improperly collected data were eliminated. Stochastic gradient descent-based ML classifier with an accuracy of 90.64% was developed to collect refined behavioral data of online users with EE behaviors. The expert group that labeled the dataset to train the ML classifiers included a medical doctor specializing in EE diagnosis and a nutritionist with profound knowledge of EE behavior. The experts labeled 5126 posts as EE (coded as 1) or others (coded as 0). Finally, the topic modeling process was conducted with LDA.

RESULTS

The following 4 macroperspective topics of online EE behaviors were identified through linguistic evidence regarding each topic: addressing feelings, sharing physical changes, sharing and asking for dietary information, and sharing dietary strategies. The 5 main topics of feedback were dietary information, compliments, consolation, automatic bot feedback, and health information. The feedback topic distribution significantly differed depending on the type of EE behavior (overall P<.001).

CONCLUSIONS

This study introduces a data-driven approach for analyzing behavior patterns of social website users with EE behaviors. We discovered the possibility of the LDA topic model as an exploratory user study method for abnormal behaviors in medical research. We also investigated the possibilities of ML- and topic modeling-based classifiers to automatically categorize text-based behavioral data, which could be applied to personalized medicine in future research.

摘要

背景

情绪化进食(EE)是各种饮食失调最显著的症状之一。收集大量关于EE的行为数据一直很困难;因此,仅对该症状进行了部分研究。为了为有EE症状的在线社交媒体用户提供充分支持,我们必须了解他们的行为模式,以设计一个复杂的个性化支持系统(PSS)。

目的

本研究旨在分析情绪化进食者的行为模式,作为设计个性化干预系统的第一步。

方法

使用机器学习(ML)框架和潜在狄利克雷分配(LDA)主题建模工具来收集和分析关于EE的行为数据。对Reddit的一个子社区/r/loseit的数据进行了分析。该数据集包括2014年7月至2018年5月的所有帖子和反馈,共185,950个帖子和3,528,107条评论。此外,删除了不当收集的数据。开发了基于随机梯度下降的ML分类器,准确率为90.64%,以收集有EE行为的在线用户的精炼行为数据。为训练ML分类器而标注数据集的专家组包括一名专门从事EE诊断的医生和一名对EE行为有深入了解的营养师。专家们将5126个帖子标注为EE(编码为1)或其他(编码为0)。最后,使用LDA进行主题建模过程。

结果

通过关于每个主题的语言证据,确定了以下4个在线EE行为的宏观视角主题:表达感受、分享身体变化、分享和询问饮食信息、分享饮食策略。反馈的5个主要主题是饮食信息、赞美、安慰、自动机器人反馈和健康信息。反馈主题分布因EE行为类型的不同而有显著差异(总体P<.–001)。

结论

本研究引入了一种数据驱动的方法来分析有EE行为的社交网站用户的行为模式。我们发现LDA主题模型作为医学研究中异常行为的探索性用户研究方法的可能性。我们还研究了基于ML和主题建模的分类器自动对基于文本的行为数据进行分类的可能性,这可应用于未来研究中的个性化医疗。

相似文献

引用本文的文献

1
A Scoping Review of Artificial Intelligence for Precision Nutrition.人工智能在精准营养领域的范围综述。
Adv Nutr. 2025 Apr;16(4):100398. doi: 10.1016/j.advnut.2025.100398. Epub 2025 Feb 28.

本文引用的文献

4
A Human(e) Factor in Clinical Decision Support Systems.临床决策支持系统中的人为因素
J Med Internet Res. 2019 Mar 19;21(3):e11732. doi: 10.2196/11732.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验