Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal.
Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal.
Prog Lipid Res. 2018 Jul;71:18-42. doi: 10.1016/j.plipres.2018.05.001. Epub 2018 May 8.
This review is focused on sphingolipid backbone hydroxylation, a small but widespread structural feature with profound impact on membrane biophysical properties. We start by summarizing sphingolipid metabolism in mammalian cells, yeast and plants, focusing on how distinct hydroxylation patterns emerge in different eukaryotic kingdoms. Then, a comparison of the biophysical properties in membrane model systems and cellular membranes from diverse organisms is made. From an integrative perspective, these results can be rationalized considering that superficial hydroxyl groups in the backbone of sphingolipids (by intervening in the H-bond network) alter the balance of favorable interactions between membrane lipids. They may strengthen the bonding or compete with other hydroxyl groups, in particular the one of membrane sterols. Different sphingolipid hydroxylation patterns can stabilize/disrupt specific membrane domains or change whole plasma membrane properties, and therefore be important in the control of protein distribution, function and lateral diffusion and in the formation and overtime stability of signaling platforms. The recent examples explored throughout this review unveil a potentially key role for sphingolipid backbone hydroxylation in both physiological and pathological situations, as it can be of extreme importance for the proper organization of cell membranes in mammalian cells, yeast and, most likely, also in plants.
这篇综述专注于神经酰胺骨架的羟化作用,这是一种微小但广泛存在的结构特征,对膜的生物物理特性有深远的影响。我们首先总结哺乳动物细胞、酵母和植物中的神经酰胺代谢,重点介绍不同真核生物王国中出现的不同羟化模式。然后,对来自不同生物的膜模型系统和细胞膜的生物物理特性进行了比较。从综合的角度来看,这些结果可以通过考虑神经酰胺骨架中表面的羟基(通过介入氢键网络)来合理化,这改变了膜脂之间有利相互作用的平衡。它们可以增强键合或与其他羟基(特别是膜甾醇的羟基)竞争。不同的神经酰胺羟化模式可以稳定/破坏特定的膜域或改变整个质膜的性质,因此在控制蛋白质分布、功能和侧向扩散以及信号平台的形成和稳定方面非常重要。本综述中探讨的最新实例揭示了神经酰胺骨架羟化在生理和病理情况下的潜在关键作用,因为它对哺乳动物细胞、酵母以及很可能还有植物中细胞膜的适当组织非常重要。