Benecha Habtamu K, Preisser John S, Divaris Kimon, Herring Amy H, Das Kalyan
National Agricultural Statistics Service, USDA, Washington, USA.
Department of Biostatistics, University of North Carolina, Chapel Hill, USA.
Biom J. 2018 Jul;60(4):845-858. doi: 10.1002/bimj.201600249. Epub 2018 May 11.
Unlike zero-inflated Poisson regression, marginalized zero-inflated Poisson (MZIP) models for counts with excess zeros provide estimates with direct interpretations for the overall effects of covariates on the marginal mean. In the presence of missing covariates, MZIP and many other count data models are ordinarily fitted using complete case analysis methods due to lack of appropriate statistical methods and software. This article presents an estimation method for MZIP models with missing covariates. The method, which is applicable to other missing data problems, is illustrated and compared with complete case analysis by using simulations and dental data on the caries preventive effects of a school-based fluoride mouthrinse program.
与零膨胀泊松回归不同,用于处理存在过多零值计数的边际化零膨胀泊松(MZIP)模型可提供对协变量对边际均值总体效应的直接解释的估计值。在存在协变量缺失的情况下,由于缺乏适当的统计方法和软件,MZIP和许多其他计数数据模型通常使用完整病例分析方法进行拟合。本文提出了一种用于协变量缺失的MZIP模型的估计方法。该方法适用于其他缺失数据问题,并通过模拟和关于一项基于学校的氟化物漱口水项目防龋效果的牙科数据进行说明,并与完整病例分析进行比较。