Rakhmawati Trias Wahyuni, Molenberghs Geert, Verbeke Geert, Faes Christel
I-BioStat, Universiteit Hasselt, Martelarenlaan 42, B-3500 Hasselt, Belgium.
I-BioStat, KU Leuven, Kapucijnenvoer 35, B-3000 Leuven, Belgium.
Biom J. 2016 Nov;58(6):1390-1408. doi: 10.1002/bimj.201500162. Epub 2016 Jun 29.
We consider models for hierarchical count data, subject to overdispersion and/or excess zeros. Molenberghs et al. () and Molenberghs et al. () extend the Poisson-normal generalized linear-mixed model by including gamma random effects to accommodate overdispersion. Excess zeros are handled using either a zero-inflation or a hurdle component. These models were studied by Kassahun et al. (). While flexible, they are quite elaborate in parametric specification and therefore model assessment is imperative. We derive local influence measures to detect and examine influential subjects, that is subjects who have undue influence on either the fit of the model as a whole, or on specific important sub-vectors of the parameter vector. The latter include the fixed effects for the Poisson and for the excess-zeros components, the variance components for the normal random effects, and the parameters describing gamma random effects, included to accommodate overdispersion. Interpretable influence components are derived. The method is applied to data from a longitudinal clinical trial involving patients with epileptic seizures. Even though the data were extensively analyzed in earlier work, the insight gained from the proposed diagnostics, statistically and clinically, is considerable. Possibly, a small but important subgroup of patients has been identified.
我们考虑用于分层计数数据的模型,该数据存在过度离散和/或过多零值的情况。莫伦伯格斯等人(参考文献1)和莫伦伯格斯等人(参考文献2)通过纳入伽马随机效应来扩展泊松-正态广义线性混合模型,以适应过度离散。过多零值则使用零膨胀或门槛成分来处理。卡萨洪等人(参考文献3)对这些模型进行了研究。虽然这些模型很灵活,但它们在参数设定方面相当复杂,因此模型评估至关重要。我们推导局部影响度量来检测和检查有影响力的个体,即那些对整个模型的拟合或参数向量的特定重要子向量有不当影响的个体。后者包括泊松和过多零值成分的固定效应、正态随机效应的方差成分,以及为适应过度离散而纳入的描述伽马随机效应的参数。我们推导出可解释的影响成分。该方法应用于一项涉及癫痫发作患者的纵向临床试验数据。尽管这些数据在早期工作中已被广泛分析,但从所提出的诊断方法在统计学和临床上获得的见解相当可观。可能已经识别出一个虽小但很重要的患者亚组。