Currin Andrew, Dunstan Mark S, Johannissen Linus O, Hollywood Katherine A, Vinaixa Maria, Jervis Adrian J, Swainston Neil, Rattray Nicholas J W, Gardiner John M, Kell Douglas B, Takano Eriko, Toogood Helen S, Scrutton Nigel S
Manchester Centre for Fine and Speciality Chemicals (SYNBIOCHEM) and School of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, United Kingdom.
ACS Catal. 2018 Mar 2;8(3):2012-2020. doi: 10.1021/acscatal.7b04115. Epub 2018 Jan 24.
The realization of a synthetic biology approach to microbial (1,2,5)-()-menthol () production relies on the identification of a gene encoding an isopulegone isomerase (IPGI), the only enzyme in the biosynthetic pathway as yet unidentified. We demonstrate that Δ5-3-ketosteroid isomerase (KSI) from can act as an IPGI, producing ()-(+)-pulegone (()-) from (+)--isopulegone (). Using a robotics-driven semirational design strategy, we identified a key KSI variant encoding four active site mutations, which confer a 4.3-fold increase in activity over the wild-type enzyme. This was assisted by the generation of crystal structures of four KSI variants, combined with molecular modeling of binding to identify key active site residue targets. The KSI variant was demonstrated to function efficiently within cascade biocatalytic reactions with downstream enzymes pulegone reductase and (-)-menthone:(-)-menthol reductase to generate from . This study introduces the use of a recombinant IPGI, engineered to function efficiently within a biosynthetic pathway for the production of in microorganisms.
实现微生物生产(1,2,5)-(-)-薄荷醇()的合成生物学方法依赖于鉴定编码异胡薄荷酮异构酶(IPGI)的基因,该酶是生物合成途径中唯一尚未鉴定的酶。我们证明来自的Δ5-3-酮类固醇异构酶(KSI)可以作为IPGI,从(+)-异胡薄荷酮()产生()-(+)-胡薄荷酮(()-)。使用机器人驱动的半理性设计策略,我们鉴定了一个关键的KSI变体,其编码四个活性位点突变,与野生型酶相比,活性增加了4.3倍。这得益于四个KSI变体晶体结构的生成,以及结合的分子建模以识别关键的活性位点残基靶点。已证明KSI变体在与下游酶胡薄荷酮还原酶和(-)-薄荷酮:(-)-薄荷醇还原酶的级联生物催化反应中能有效发挥作用,从生成。本研究介绍了一种重组IPGI的应用,该重组IPGI经过工程改造,能在微生物生产的生物合成途径中有效发挥作用。