Suppr超能文献

基于新型正则化多项回归的急性白血病基因分组选择与多分类。

Grouped gene selection and multi-classification of acute leukemia via new regularized multinomial regression.

机构信息

School of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China.

School of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China.

出版信息

Gene. 2018 Aug 15;667:18-24. doi: 10.1016/j.gene.2018.05.012. Epub 2018 May 9.

Abstract

Diagnosing acute leukemia is the necessary prerequisite to treating it. Multi-classification on the gene expression data of acute leukemia is help for diagnosing it which contains B-cell acute lymphoblastic leukemia (BALL), T-cell acute lymphoblastic leukemia (TALL) and acute myeloid leukemia (AML). However, selecting cancer-causing genes is a challenging problem in performing multi-classification. In this paper, weighted gene co-expression networks are employed to divide the genes into groups. Based on the dividing groups, a new regularized multinomial regression with overlapping group lasso penalty (MROGL) has been presented to simultaneously perform multi-classification and select gene groups. By implementing this method on three-class acute leukemia data, the grouped genes which work synergistically are identified, and the overlapped genes shared by different groups are also highlighted. Moreover, MROGL outperforms other five methods on multi-classification accuracy.

摘要

诊断急性白血病是治疗它的必要前提。对急性白血病基因表达数据进行多分类有助于诊断,其中包括 B 细胞急性淋巴细胞白血病(BALL)、T 细胞急性淋巴细胞白血病(TALL)和急性髓系白血病(AML)。然而,选择致癌基因是进行多分类的一个具有挑战性的问题。在本文中,加权基因共表达网络被用来将基因分成组。基于分组,提出了一种新的正则化多项回归与重叠组套索惩罚(MROGL),以同时进行多分类和选择基因组。通过在三类急性白血病数据上实现该方法,鉴定出协同作用的分组基因,并突出不同组之间共享的重叠基因。此外,MROGL 在多分类准确性方面优于其他五种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验