Suppr超能文献

二维准周期伊辛模型中的普遍性与哈里斯 - 勒克不相关性

Universality in the 2d Quasi-periodic Ising Model and Harris-Luck Irrelevance.

作者信息

Gallone Matteo, Mastropietro Vieri

机构信息

International School for Advanced Studies - SISSA, Via Bonomea 265, 34136 Trieste, Italy.

Dipartimento di Matematica F. Enriques, Università di Milano, Via C. Saldini 50, 20129 Milan, Italy.

出版信息

Commun Math Phys. 2024;405(10):235. doi: 10.1007/s00220-024-05092-6. Epub 2024 Sep 16.

Abstract

We prove that in the 2D Ising model with a weak bidimensional quasi-periodic disorder in the interaction, the critical behavior is the same as in the non-disordered case; that is, the critical exponents for the specific heat and energy-energy correlations are identical, and no logarithmic corrections are present. The disorder produces a quasi-periodic modulation of the amplitude of the correlations and a renormalization of the velocities, that is, the coefficients of the rescaling of positions, and of the critical temperature. The result establishes the validity of the prediction based on the Harris-Luck criterion, and it provides the first rigorous proof of universality in the Ising model in the presence of quasi-periodic disorder in both directions and for any angle. Small divisors are controlled assuming a Diophantine condition on the frequencies, and the convergence of the series is proved by Renormalization Group analysis.

摘要

我们证明,在相互作用中具有弱二维准周期无序的二维伊辛模型中,临界行为与非无序情况相同;即,比热和能量-能量关联的临界指数相同,且不存在对数修正。无序导致关联幅度的准周期调制以及速度的重整化,也就是位置重标度系数和临界温度的重整化。该结果确立了基于哈里斯-拉克准则的预测的有效性,并且它为存在双向准周期无序且任意角度的伊辛模型中的普适性提供了首个严格证明。假设频率满足丢番图条件来控制小除数,并通过重整化群分析证明级数的收敛性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a37/11402866/16b3ca33083e/220_2024_5092_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验