Suppr超能文献

真核生物趋化作用中快速信号反应的动态跷跷板模型

Dynamic seesaw model for rapid signaling responses in eukaryotic chemotaxis.

作者信息

Feng Shi Liang, Zhou Lü Wen, Lü Shou Qin, Zhang Yan

机构信息

Institute of mechanical engineering and mechanics, Ningbo University, Ningbo 315211, People's Republic of China. Center of Biomechanics and Bioengineering and Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

出版信息

Phys Biol. 2018 May 29;15(5):056004. doi: 10.1088/1478-3975/aac45b.

Abstract

Directed movement of eukaryotic cells toward spatiotemporally varied chemotactic stimuli enables rapid intracellular signaling responses. While macroscopic cellular manifestation is shaped by balancing external stimuli strength with finite internal delays, the organizing principles of the underlying molecular mechanisms remain to be clarified. Here, we developed a novel modeling framework based on a simple seesaw mechanism to elucidate how cells repeatedly reverse polarity. As a key feature of the modeling, the bottom module of bidirectional molecular transport is successively controlled by three upstream modules of signal reception, initial signal processing, and Rho GTPase regulation. Our simulations indicated that an isotropic cell is polarized in response to a graded input signal. By applying a reversal gradient to a chemoattractant signal, lamellipod-specific molecules (i.e. PIP and PI3K) disappear, first from the cell front, and then they redistribute at the opposite side, whereas functional molecules at the rear of the cell (i.e. PIP and PTEN) act oppositely. In particular, the model cell exhibits a seesaw-like spatiotemporal pattern for the establishment of front and rear and interconversion, consistent with those related experimental observations. Increasing the switching frequency of the chemotactic gradient causes the cell to stay in a trapped state, further supporting the proposed dynamics of eukaryotic chemotaxis with the underlying cytoskeletal remodeling.

摘要

真核细胞朝着时空变化的趋化刺激的定向运动能够实现快速的细胞内信号反应。虽然宏观的细胞表现是通过平衡外部刺激强度和有限的内部延迟来塑造的,但潜在分子机制的组织原则仍有待阐明。在这里,我们基于一种简单的跷跷板机制开发了一种新颖的建模框架,以阐明细胞如何反复反转极性。作为该建模的一个关键特征,双向分子运输的底部模块依次由信号接收、初始信号处理和Rho GTP酶调节这三个上游模块控制。我们的模拟表明,一个各向同性的细胞会响应梯度输入信号而发生极化。通过对趋化因子信号应用反转梯度,片状伪足特异性分子(即磷脂酰肌醇-4,5-二磷酸和磷脂酰肌醇-3-激酶)首先从细胞前端消失,然后在相反一侧重新分布,而细胞后部的功能分子(即磷脂酰肌醇-4,5-二磷酸和磷酸酶张力蛋白同源物)则表现出相反的行为。特别是,模型细胞在建立前后和相互转换时表现出一种类似跷跷板的时空模式,这与相关实验观察结果一致。增加趋化梯度的切换频率会使细胞处于被困状态,进一步支持了所提出的具有潜在细胞骨架重塑的真核生物趋化动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验