Department of Physics, and Centre for the Physics of Materials, McGill University, Montreal, Quebec, Canada H3A 2T8.
Phys Rev E. 2018 Apr;97(4-1):042802. doi: 10.1103/PhysRevE.97.042802.
A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.
要全面了解多晶材料,需要研究成核过程,这是一个在原子尺度上发生的热激活相变。对于传统数值技术来说,这个过程的数值建模是有问题的:常用的相场方法的分辨率无法扩展到成核发生的原子尺度,而分子动力学等原子方法则无法扩展到介观尺度,在介观尺度上,晚期生长和结构形成发生在早期成核之后。因此,研究最近提出的相场晶体(PFC)模型中的成核问题很有意义,该模型试图在微观结构模拟中弥合原子和介观尺度之间的差距。在这项工作中,我们针对各种参数选择,在 PFC 模型的最简单版本中数值计算了均匀液相到固相的成核速率和潜伏期。我们表明,尽管缺乏一些假定在 CNT 中的明确原子特征,但该模型自然与经典成核理论(CNT)的预测具有定性一致性。我们还研究了在成核晶粒中晶格结构的早期出现情况,发现与 CNT 的一些基本假设存在分歧。然后,我们认为 PFC 模型的定量正确成核理论需要将 CNT 扩展到多变量理论。