Computational Science Laboratory, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia.
J Chem Phys. 2018 Aug 21;149(7):074504. doi: 10.1063/1.5041320.
The second virial coefficient (), Boyle temperature ( ), and temperature maximum ( ) are determined for the Lennard-Jones/Mie (LJ/M) potential. The full range of , behavior is investigated between the 5-4 LJ/M, hard sphere ( = ∞) + attractive ( ≥ 4) term (HSA), and hard sphere potential limits. The ( = + 1)- LJ/M potential has an important role in characterising the overall behavior of second virial coefficient properties. Different , behavior is observed for (constant)- LJ/M and -(constant) LJ/M potentials. In the former case, there are two distinct linear (5 ≤ ≤ 30) and non-linear regions ( > 30). In the latter case, there is a minimum in in two distinct non-linear regions (4 ≤ ≤ 34 and 35 ≤ ≤ 150) followed by a maximum region ( ≥ 151). Analytical relationships for some of the behavior are determined and numerical values of for a range of and values are reported. Molecular simulation data are used to determine simple relationships between and both the critical temperature and triple point temperature for the special case of the -6 LJ/M potential.
为 Lennard-Jones/Mie(LJ/M)势能确定了第二维里系数()、波义耳温度()和温度最大值()。研究了在 5-4 LJ/M、硬球(= ∞)+吸引(≥ 4)项(HSA)和硬球势极限之间的整个 范围的行为。(= + 1)-LJ/M 势能在描述第二维里系数性质的整体行为方面起着重要作用。对于(常数)-LJ/M 和 -(常数)-LJ/M 势能,观察到不同的 ,行为。在前一种情况下,有两个明显的线性(5≤≤30)和非线性区域(>30)。在后一种情况下,在两个不同的非线性区域(4≤≤34 和 35≤≤150)中存在 的最小值,然后是 的最大值区域(≥151)。确定了一些行为的分析关系,并报告了一系列和值的范围内的一些值。分子模拟数据用于确定特殊情况下-6 LJ/M 势能的临界温度和三相点温度与之间的简单关系。