Suppr超能文献

弱伽利略不变性作为粗粒扩散模型的选择原理。

Weak Galilean invariance as a selection principle for coarse-grained diffusive models.

机构信息

Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom.

School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2018 May 29;115(22):5714-5719. doi: 10.1073/pnas.1717292115. Epub 2018 May 14.

Abstract

How does the mathematical description of a system change in different reference frames? Galilei first addressed this fundamental question by formulating the famous principle of Galilean invariance. It prescribes that the equations of motion of closed systems remain the same in different inertial frames related by Galilean transformations, thus imposing strong constraints on the dynamical rules. However, real world systems are often described by coarse-grained models integrating complex internal and external interactions indistinguishably as friction and stochastic forces. Since Galilean invariance is then violated, there is seemingly no alternative principle to assess a priori the physical consistency of a given stochastic model in different inertial frames. Here, starting from the Kac-Zwanzig Hamiltonian model generating Brownian motion, we show how Galilean invariance is broken during the coarse-graining procedure when deriving stochastic equations. Our analysis leads to a set of rules characterizing systems in different inertial frames that have to be satisfied by general stochastic models, which we call "weak Galilean invariance." Several well-known stochastic processes are invariant in these terms, except the continuous-time random walk for which we derive the correct invariant description. Our results are particularly relevant for the modeling of biological systems, as they provide a theoretical principle to select physically consistent stochastic models before a validation against experimental data.

摘要

不同参考系下系统的数学描述如何变化?伽利略首次通过提出著名的伽利略不变性原理来解决这个基本问题。它规定,封闭系统的运动方程在通过伽利略变换相关的不同惯性参考系中保持不变,从而对动力学规则施加了很强的约束。然而,实际系统通常由粗粒化模型描述,这些模型将复杂的内部和外部相互作用不可区分地集成在一起,如摩擦力和随机力。由于伽利略不变性随后被违反,因此似乎没有其他原理可以在不同的惯性参考系中先验地评估给定随机模型的物理一致性。在这里,我们从产生布朗运动的 Kac-Zwanzig 哈密顿模型出发,展示了在推导出随机方程时,粗粒化过程中伽利略不变性是如何被破坏的。我们的分析导致了一组规则,这些规则描述了不同惯性参考系中的系统,这些规则必须被一般的随机模型满足,我们称之为“弱伽利略不变性”。除了连续时间随机漫步,在这些术语中,几个众所周知的随机过程是不变的,我们为其推导出了正确的不变描述。我们的结果对于生物系统的建模特别重要,因为它们为在验证实验数据之前选择物理上一致的随机模型提供了一个理论原则。

相似文献

1
Weak Galilean invariance as a selection principle for coarse-grained diffusive models.弱伽利略不变性作为粗粒扩散模型的选择原理。
Proc Natl Acad Sci U S A. 2018 May 29;115(22):5714-5719. doi: 10.1073/pnas.1717292115. Epub 2018 May 14.
4
Stochastic rotation dynamics. I. Formalism, Galilean invariance, and Green-Kubo relations.随机旋转动力学。I. 形式体系、伽利略不变性和格林-久保关系。
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jun;67(6 Pt 2):066705. doi: 10.1103/PhysRevE.67.066705. Epub 2003 Jun 12.

本文引用的文献

2
Single integrodifferential wave equation for a Lévy walk.用于 Lévy 行走的单积分微分波动方程。
Phys Rev E. 2016 Feb;93(2):020101. doi: 10.1103/PhysRevE.93.020101. Epub 2016 Feb 1.
4
Langevin formulation of a subdiffusive continuous-time random walk in physical time.兰格文对物理时间中次扩散连续时间随机游走的表述。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):012102. doi: 10.1103/PhysRevE.92.012102. Epub 2015 Jul 2.
7
Anomalous transport in the crowded world of biological cells.生物细胞拥挤世界中的异常输运。
Rep Prog Phys. 2013 Apr;76(4):046602. doi: 10.1088/0034-4885/76/4/046602. Epub 2013 Mar 12.
8
Intracellular transport of insulin granules is a subordinated random walk.胰岛素颗粒的细胞内运输是一种从属的随机漫步。
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):4911-6. doi: 10.1073/pnas.1221962110. Epub 2013 Mar 11.
9
Stochastic thermodynamics, fluctuation theorems and molecular machines.随机热力学、涨落定理和分子机器。
Rep Prog Phys. 2012 Dec;75(12):126001. doi: 10.1088/0034-4885/75/12/126001. Epub 2012 Nov 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验