Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.
Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 0A4.
Proc Natl Acad Sci U S A. 2018 May 29;115(22):E5193-E5202. doi: 10.1073/pnas.1718373115. Epub 2018 May 14.
Store-operated Orai1 channels are activated through a unique inside-out mechanism involving binding of the endoplasmic reticulum Ca sensor STIM1 to cytoplasmic sites on Orai1. Although atomic-level details of Orai structure, including the pore and putative ligand binding domains, are resolved, how the gating signal is communicated to the pore and opens the gate is unknown. To address this issue, we used scanning mutagenesis to identify 15 residues in transmembrane domains (TMs) 1-4 whose perturbation activates Orai1 channels independently of STIM1. Cysteine accessibility analysis and molecular-dynamics simulations indicated that constitutive activation of the most robust variant, H134S, arises from a pore conformational change that opens a hydrophobic gate to augment pore hydration, similar to gating evoked by STIM1. Mutational analysis of this locus suggests that H134 acts as steric brake to stabilize the closed state of the channel. In addition, atomic packing analysis revealed distinct functional contacts between the TM1 pore helix and the surrounding TM2/3 helices, including one set mediated by a cluster of interdigitating hydrophobic residues and another by alternative ridges of polar and hydrophobic residues. Perturbing these contacts via mutagenesis destabilizes STIM1-mediated Orai1 channel gating, indicating that these bridges between TM1 and the surrounding TM2/3 ring are critical for conveying the gating signal to the pore. These findings help develop a framework for understanding the global conformational changes and allosteric interactions between topologically distinct domains that are essential for activation of Orai1 channels.
钙库操纵的钙释放激活通道(Orai1 通道)通过一种独特的内向外激活机制被激活,该机制涉及内质网 Ca 传感器 STIM1 与 Orai1 细胞质位点的结合。尽管 Orai 结构的原子水平细节,包括孔和假定的配体结合结构域,已经得到解决,但门控信号如何传递到孔并打开门仍然未知。为了解决这个问题,我们使用扫描诱变来识别跨膜结构域(TMs)1-4 中的 15 个残基,这些残基的干扰可独立于 STIM1 激活 Orai1 通道。半胱氨酸可及性分析和分子动力学模拟表明,最稳健变体 H134S 的组成性激活源自孔构象的变化,该变化打开了疏水性门以增加孔的水合作用,类似于 STIM1 引发的门控。该位点的突变分析表明,H134 作为一种空间位阻来稳定通道的关闭状态。此外,原子堆积分析显示 TM1 孔螺旋和周围 TM2/3 螺旋之间存在独特的功能接触,其中一组由一组交错的疏水性残基介导,另一组由极性和疏水性残基的替代脊介导。通过诱变破坏这些接触会使 STIM1 介导的 Orai1 通道门控失稳,表明 TM1 和周围 TM2/3 环之间的这些桥对于将门控信号传递到孔是至关重要的。这些发现有助于理解拓扑上不同的域之间的整体构象变化和变构相互作用,这对于 Orai1 通道的激活至关重要。