Suppr超能文献

基于转录组和基因组数据的硬骨鱼(条鳍鱼)综合系统发育研究。

Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data.

机构信息

Department of Biological Sciences, The George Washington University, Washington, DC 20052;

National Museum of Natural History, Smithsonian Institution, Washington, DC 20560.

出版信息

Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6249-6254. doi: 10.1073/pnas.1719358115. Epub 2018 May 14.

Abstract

Our understanding of phylogenetic relationships among bony fishes has been transformed by analysis of a small number of genes, but uncertainty remains around critical nodes. Genome-scale inferences so far have sampled a limited number of taxa and genes. Here we leveraged 144 genomes and 159 transcriptomes to investigate fish evolution with an unparalleled scale of data: >0.5 Mb from 1,105 orthologous exon sequences from 303 species, representing 66 out of 72 ray-finned fish orders. We apply phylogenetic tests designed to trace the effect of whole-genome duplication events on gene trees and find paralogy-free loci using a bioinformatics approach. Genome-wide data support the structure of the fish phylogeny, and hypothesis-testing procedures appropriate for phylogenomic datasets using explicit gene genealogy interrogation settle some long-standing uncertainties, such as the branching order at the base of the teleosts and among early euteleosts, and the sister lineage to the acanthomorph and percomorph radiations. Comprehensive fossil calibrations date the origin of all major fish lineages before the end of the Cretaceous.

摘要

我们对硬骨鱼类系统发育关系的理解已经通过对少数几个基因的分析发生了转变,但关键节点仍然存在不确定性。迄今为止,基于基因组规模的推断仅对有限数量的分类群和基因进行了采样。在这里,我们利用 144 个基因组和 159 个转录组,以前所未有的数据规模来研究鱼类进化:来自 303 个物种的 1105 个同源外显子序列的>0.5 Mb,代表了 72 个栉鳍鱼类目中的 66 个。我们应用了旨在追踪全基因组复制事件对基因树影响的系统发育检验,并使用生物信息学方法找到无并系的基因座。全基因组数据支持鱼类系统发育的结构,并且使用显式基因谱系询问的适合基因组数据集的假设检验程序解决了一些长期存在的不确定性,例如硬骨鱼类和早期真骨鱼类基部的分支顺序,以及棘鳍鱼类和鲈形鱼类辐射的姐妹谱系。全面的化石标定将所有主要鱼类谱系的起源日期定在白垩纪结束之前。

相似文献

1
Comprehensive phylogeny of ray-finned fishes (Actinopterygii) based on transcriptomic and genomic data.
Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):6249-6254. doi: 10.1073/pnas.1719358115. Epub 2018 May 14.
3
Resolution of ray-finned fish phylogeny and timing of diversification.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13698-703. doi: 10.1073/pnas.1206625109. Epub 2012 Aug 6.
5
Exon probe sets and bioinformatics pipelines for all levels of fish phylogenomics.
Mol Ecol Resour. 2021 Apr;21(3):816-833. doi: 10.1111/1755-0998.13287. Epub 2020 Nov 21.
8
Hox clusters of the bichir (Actinopterygii, Polypterus senegalus) highlight unique patterns of sequence evolution in gnathostome phylogeny.
J Exp Zool B Mol Dev Evol. 2011 Sep 15;316(6):451-64. doi: 10.1002/jez.b.21420. Epub 2011 Jun 17.
9
Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes.
Mol Biol Evol. 2004 Jun;21(6):1146-51. doi: 10.1093/molbev/msh114. Epub 2004 Mar 10.
10
Fish genomes provide novel insights into the evolution of vertebrate secretin receptors and their ligand.
Gen Comp Endocrinol. 2014 Dec 1;209:82-92. doi: 10.1016/j.ygcen.2014.05.025. Epub 2014 Jun 3.

引用本文的文献

4
Genome-wide identification of the interferon complex establishes IFNf in Cypriniformes.
BMC Biol. 2025 Jul 7;23(1):202. doi: 10.1186/s12915-025-02319-3.
5
Ecological interactions and genomic innovation fueled the evolution of ray-finned fish endothermy.
Sci Adv. 2025 Jun 27;11(26):eads8488. doi: 10.1126/sciadv.ads8488. Epub 2025 Jun 25.
6
Enteric neural crest development in Astyanax mexicanus surface fish and cavefish.
Differentiation. 2025 Jun 13;144:100881. doi: 10.1016/j.diff.2025.100881.
7
Integrating phylogenies with chronology to assemble the tree of life.
Front Bioinform. 2025 Apr 30;5:1571568. doi: 10.3389/fbinf.2025.1571568. eCollection 2025.
8
Phylogenomics establishes an Early Miocene reconstruction of reef vertebrate diversity.
Sci Adv. 2025 May 9;11(19):eadu6149. doi: 10.1126/sciadv.adu6149. Epub 2025 May 7.
9
Cranial kinematics and prey-type effects in feeding strikes.
Proc Biol Sci. 2025 Apr;292(2045):20242542. doi: 10.1098/rspb.2024.2542. Epub 2025 Apr 23.

本文引用的文献

1
Explosive diversification of marine fishes at the Cretaceous-Palaeogene boundary.
Nat Ecol Evol. 2018 Apr;2(4):688-696. doi: 10.1038/s41559-018-0494-6. Epub 2018 Mar 12.
2
The Divergent Genomes of Teleosts.
Annu Rev Anim Biosci. 2018 Feb 15;6:47-68. doi: 10.1146/annurev-animal-030117-014821.
3
Early members of 'living fossil' lineage imply later origin of modern ray-finned fishes.
Nature. 2017 Sep 14;549(7671):265-268. doi: 10.1038/nature23654. Epub 2017 Aug 30.
4
Contentious relationships in phylogenomic studies can be driven by a handful of genes.
Nat Ecol Evol. 2017 Apr 10;1(5):126. doi: 10.1038/s41559-017-0126.
5
Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life.
Nat Ecol Evol. 2017 Jan 13;1(2):20. doi: 10.1038/s41559-016-0020.
6
Phylogenetic classification of bony fishes.
BMC Evol Biol. 2017 Jul 6;17(1):162. doi: 10.1186/s12862-017-0958-3.
7
Conserved Nonexonic Elements: A Novel Class of Marker for Phylogenomics.
Syst Biol. 2017 Nov 1;66(6):1028-1044. doi: 10.1093/sysbio/syx058.
8
Phylogenomic analysis of a rapid radiation of misfit fishes (Syngnathiformes) using ultraconserved elements.
Mol Phylogenet Evol. 2017 Aug;113:33-48. doi: 10.1016/j.ympev.2017.05.002. Epub 2017 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验