Liu Zhanjiang, Gao Dongya
Department of Biology, College of Arts and Sciences, Tennessee Technological University, Cookeville, TN 38505, USA.
Int J Mol Sci. 2025 Apr 1;26(7):3282. doi: 10.3390/ijms26073282.
The canonical model of vertebrate sex chromosome evolution predicts a one-way trend toward degradation. However, most sex chromosomes in lower vertebrates are homomorphic. Recent progress in studies of sex determination has resulted in the discovery of more than 30 master sex determination (MSD) genes, most of which are from teleost fish. An analysis of MSD gene acquisition, recombination suppression, and sex chromosome-specific sequences revealed correlations in the modes of MSD gene acquisition and the evolution of sex chromosomes. Sex chromosomes remain homomorphic with MSD genes acquired by simple mutations, gene duplications, allelic variations, or neofunctionalization; in contrast, they become heteromorphic with MSD genes acquired by chromosomal inversion, fusion, and fission. There is no recombination suppression with sex chromosomes carrying MSD genes gained through simple mutations. In contrast, there is extensive recombination suppression with sex chromosomes carrying MSD genes gained through chromosome inversion. There is limited recombination suppression with sex chromosomes carrying MSD genes gained through transposition or translocation. We propose a cause-effect model that predicts sex chromosome evolution as a consequence of the acquisition modes of MSD genes, which explains the evolution of sex chromosomes in various vertebrates. A key factor determining the trend of sex chromosome evolution is whether non-homologous regions are created during the acquisition of MSD genes. Chromosome inversion creates inversely homologous but directly non-homologous sequences, which lead to recombination suppression but retain recombination potential. Over time, recurrent recombination in the inverted regions leads to the formation of strata and may cause the degradation of sex chromosomes. Depending on the nature of deletions in the inverted regions, sex chromosomes may evolve with dosage compensation, or the selective retention of haplo-insufficient genes may be used as an alternative strategy.
脊椎动物性染色体进化的经典模型预测了一种单向的退化趋势。然而,低等脊椎动物中的大多数性染色体是同态的。性别决定研究的最新进展导致发现了30多个主要性别决定(MSD)基因,其中大多数来自硬骨鱼。对MSD基因的获得、重组抑制和性染色体特异性序列的分析揭示了MSD基因获得模式与性染色体进化之间的相关性。当通过简单突变、基因复制、等位基因变异或新功能化获得MSD基因时,性染色体保持同态;相反,当通过染色体倒位、融合和裂变获得MSD基因时,性染色体则变为异型。通过简单突变获得MSD基因的性染色体不存在重组抑制。相反,通过染色体倒位获得MSD基因的性染色体存在广泛的重组抑制。通过转座或易位获得MSD基因的性染色体存在有限度的重组抑制。我们提出了一个因果模型,该模型预测性染色体进化是MSD基因获得模式的结果,这解释了各种脊椎动物中性染色体的进化。决定 性染色体进化趋势的一个关键因素是在获得MSD基因的过程中是否产生了非同源区域。染色体倒位产生反向同源但直接非同源的序列,这导致重组抑制但保留了重组潜力。随着时间的推移,倒位区域中的反复重组会导致分层的形成,并可能导致性染色体的退化。根据倒位区域中缺失的性质,性染色体可能伴随着剂量补偿而进化,或者单倍体不足基因的选择性保留可能被用作一种替代策略。