Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea.
Int J Mol Sci. 2018 May 15;19(5):1470. doi: 10.3390/ijms19051470.
We have previously demonstrated the potential of biologically synthesized silver nanoparticles (AgNP) in the induction of neuronal differentiation of human neuroblastoma, SH-SY5Y cells; we aimed herein to unveil its molecular mechanism in comparison to the well-known neuronal differentiation-inducing agent, all-trans-retinoic acid (RA). AgNP-treated SH-SY5Y cells showed significantly higher reactive oxygen species (ROS) generation, stronger mitochondrial membrane depolarization, lower dual-specificity phosphatase expression, higher extracellular-signal-regulated kinase (ERK) phosphorylation, lower AKT phosphorylation, and lower expression of the genes encoding the antioxidant enzymes than RA-treated cells. Notably, pretreatment with -acetyl-l-cysteine significantly abolished AgNP-induced neuronal differentiation, but not in that induced by RA. ERK inhibition, but not AKT inhibition, suppresses neurite growth that is induced by AgNP. Taken together, our results uncover the pivotal contribution of ROS in the AgNP-induced neuronal differentiation mechanism, which is different from that of RA. However, the negative consequence of AgNP-induced neurite growth may be high ROS generation and the downregulation of the expression of the genes encoding the antioxidant enzymes, which prompts the future consideration and an in-depth study of the application of AgNP-differentiated cells in neurodegenerative disease therapy.
我们之前已经证明了生物合成的银纳米粒子(AgNP)在诱导人神经母细胞瘤 SH-SY5Y 细胞神经元分化方面的潜力;在此,我们旨在揭示其与众所周知的神经元分化诱导剂全反式视黄酸(RA)相比的分子机制。AgNP 处理的 SH-SY5Y 细胞表现出明显更高的活性氧(ROS)生成、更强的线粒体膜去极化、更低的双特异性磷酸酶表达、更高的细胞外信号调节激酶(ERK)磷酸化、更低的 AKT 磷酸化和编码抗氧化酶的基因表达低于 RA 处理的细胞。值得注意的是,-乙酰-l-半胱氨酸预处理可显著消除 AgNP 诱导的神经元分化,但对 RA 诱导的分化没有影响。ERK 抑制,但不是 AKT 抑制,可抑制由 AgNP 诱导的突起生长。总之,我们的结果揭示了 ROS 在 AgNP 诱导的神经元分化机制中的关键作用,这与 RA 不同。然而,AgNP 诱导的突起生长的负面后果可能是高 ROS 生成和编码抗氧化酶的基因表达下调,这促使我们未来考虑并深入研究 AgNP 分化细胞在神经退行性疾病治疗中的应用。