Suppr超能文献

混合 Hindmarsh-Rose 模型中的周期添加分岔与混沌。

Period-adding bifurcation and chaos in a hybrid Hindmarsh-Rose model.

机构信息

College of Electronics and Information Engineering, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Chongqing, 400715, PR China; Science and Technology College of Hubei University For Nationalities, Enshi, 445000, PR China.

College of Electronics and Information Engineering, Southwest University, Chongqing, 400715, PR China; Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, Chongqing, 400715, PR China.

出版信息

Neural Netw. 2018 Sep;105:26-35. doi: 10.1016/j.neunet.2018.04.009. Epub 2018 Apr 27.

Abstract

Recently, the hybrid neuron models which combine the basic neuron models with impulsive effect(the state reset process) had been proposed, however, the preset value and the reset value of membrane potential were both fixed constants in the known models. In this paper, the Hindmarsh-Rose neuron model with nonlinear reset process is presented where the preset value and the reset value of membrane potential are variable constants. We conduct a qualitative analysis in the vicinity of the equilibrium point or the limit cycle of the proposed system by using the theories of impulsive semi-dynamical systems. Firstly, the more detailed impulsive set and phase set are given, then using the fixed point of Poincaré map, the existences of order-1and order-k(k>=2) period solutions are investigated subsequently. Furthermore, numerical investigations including period-adding bifurcation, multiple attractors coexistence, switch-like behavior are presented to further describe the bifurcation and chaos phenomena. Finally, the obtained results and possible applications of the proposed model are elaborated.

摘要

最近,已经提出了将基本神经元模型与脉冲效应(状态重置过程)相结合的混合神经元模型,然而,在已知模型中,膜电位的预设值和重置值都是固定常数。在本文中,提出了具有非线性重置过程的 Hindmarsh-Rose 神经元模型,其中膜电位的预设值和重置值是可变常数。我们通过使用脉冲半动力系统理论,在平衡点或极限环附近进行定性分析。首先,给出了更详细的脉冲集和相集,然后使用 Poincaré 映射的不动点,研究了阶-1 和阶-k(k>=2)周期解的存在性。此外,还进行了数值研究,包括周期添加分岔、多个吸引子共存、开关行为,以进一步描述分岔和混沌现象。最后,阐述了所提出模型的结果和可能的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验