BPMP, INRA, CNRS, Université de Montpellier, Montpellier SupAgro, 34090 Montpellier, France.
Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science of Palacký University, CZ-78371 Olomouc, Czech Republic.
Plant Cell. 2018 Jun;30(6):1243-1257. doi: 10.1105/tpc.18.00011. Epub 2018 May 15.
Plants face temporal and spatial variation in nitrogen (N) availability. This includes heterogeneity in soil nitrate (NO) content. To overcome these constraints, plants modify their gene expression and physiological processes to optimize N acquisition. This plasticity relies on a complex long-distance root-shoot-root signaling network that remains poorly understood. We previously showed that cytokinin (CK) biosynthesis is required to trigger systemic N signaling. Here, we performed split-root experiments and used a combination of CK-related mutant analyses, hormone profiling, transcriptomic analysis, NO uptake assays, and root growth measurements to gain insight into systemic N signaling in By comparing wild-type plants and mutants affected in CK biosynthesis and ABCG14-dependent root-to-shoot translocation of CK, we revealed an important role for active -zeatin (Z) in systemic N signaling. Both rapid sentinel gene regulation and long-term functional acclimation to heterogeneous NO supply, including NO transport and root growth regulation, are likely mediated by the integration of content in shoots. Furthermore, shoot transcriptome profiling revealed that glutamate/glutamine metabolism is likely a target of Z root-to-shoot translocation, prompting an interesting hypothesis regarding shoot-to-root communication. Finally, this study highlights Z-independent pathways regulating gene expression in shoots as well as NO uptake activity in response to total N deprivation.
植物面临氮(N)可用性的时间和空间变化。这包括土壤硝酸盐(NO)含量的异质性。为了克服这些限制,植物会改变其基因表达和生理过程,以优化 N 的获取。这种可塑性依赖于一个复杂的长距离根-茎-根信号网络,该网络仍未得到充分理解。我们之前曾表明,细胞分裂素(CK)的生物合成对于触发系统性 N 信号是必需的。在这里,我们进行了分根实验,并结合 CK 相关突变体分析、激素分析、转录组分析、NO 摄取测定和根生长测量,深入了解了系统性 N 信号在 通过比较野生型植物和影响 CK 生物合成和 ABCG14 依赖的 CK 从根到茎的易位的突变体,我们揭示了活跃的玉米素(Z)在系统性 N 信号中的重要作用。快速的哨兵基因调控和对异质 NO 供应的长期功能适应,包括 NO 运输和根生长调节,可能都由 shoot 中 含量的整合介导。此外,对 shoot 的转录组分析表明,谷氨酸/谷氨酰胺代谢可能是 Z 从根到茎易位的一个靶点,这就提出了一个关于 shoot 到根的通信的有趣假设。最后,这项研究强调了 Z 独立的途径可以调节 shoot 中的基因表达,以及对总氮缺乏的 NO 摄取活性。