Sainsbury Laboratory, University of Cambridge, CB2 1LR Cambridge, United Kingdom.
École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, 69342 Lyon, France.
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1382-1387. doi: 10.1073/pnas.1718670115. Epub 2018 Jan 23.
The shoot apical meristem (SAM) is responsible for the generation of all the aerial parts of plants. Given its critical role, dynamical changes in SAM activity should play a central role in the adaptation of plant architecture to the environment. Using quantitative microscopy, grafting experiments, and genetic perturbations, we connect the plant environment to the SAM by describing the molecular mechanism by which cytokinins signal the level of nutrient availability to the SAM. We show that a systemic signal of cytokinin precursors mediates the adaptation of SAM size and organogenesis rate to the availability of mineral nutrients by modulating the expression of , a key regulator of stem cell homeostasis. In time-lapse experiments, we further show that this mechanism allows meristems to adapt to rapid changes in nitrate concentration, and thereby modulate their rate of organ production to the availability of mineral nutrients within a few days. Our work sheds light on the role of the stem cell regulatory network by showing that it not only maintains meristem homeostasis but also allows plants to adapt to rapid changes in the environment.
茎尖分生组织(SAM)负责产生植物所有的地上部分。鉴于其关键作用,SAM 活性的动态变化应该在植物结构对环境的适应中发挥核心作用。通过定量显微镜、嫁接实验和遗传干扰,我们通过描述细胞分裂素向 SAM 传递养分可用性信号的分子机制,将植物环境与 SAM 联系起来。我们表明,细胞分裂素前体的系统信号通过调节关键干细胞稳态调节剂 的表达,来调节 SAM 大小和器官发生速率以适应矿质养分的可用性。在延时实验中,我们进一步表明,该机制允许分生组织适应硝酸盐浓度的快速变化,从而在几天内调节其器官产生速度以适应矿质养分的可用性。我们的工作通过表明干细胞调控网络不仅维持分生组织的稳态,而且允许植物适应环境的快速变化,揭示了其作用。