Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), Calle Faraday 9, 28049, Madrid, Spain.
Sci Rep. 2018 May 15;8(1):7544. doi: 10.1038/s41598-018-25791-0.
Spatial interaction effects between charge carriers in ionic systems play a sizable role beyond a classical Maxwellian description. We develop a nonlocal, two-fluid, hydrodynamic theory of charges and study ionic plasmon effects, i.e. collective charge oscillations in electrolytes. Ionic spatial dispersion arises from both positive and negative charge dynamics with an impact in the (far-)infrared. Despite highly classical parameters, nonlocal quenching of up to 90% is observed for particle sizes spanning orders of magnitude. Notably, the ionic system is widely tunable via ion concentration, mass and charge, in contrast to solid metal nanoparticles. A nonlocal soft plasmonic theory for ions is relevant for biological and chemical systems bridging hard and soft matter theory and allowing the investigation of non-classical effects in electrolytes in full analogy to solid metal particles. The presented semi-classical approach allows studying plasmonic photo-catalysis introducing nonlocal aspects into electrolyte-metal interactions.
离子体系中载流子的空间相互作用除了经典的麦克斯韦描述外,还起着相当大的作用。我们开发了一种非局部的、双流体的电荷流体动力学理论,并研究了离子等离子体效应,即电解质中的集体电荷振荡。离子空间色散既来自正电荷又来自负电荷的动力学,对(远)红外有影响。尽管参数高度经典,但在跨越几个数量级的粒径范围内观察到高达 90%的非局部猝灭。值得注意的是,与固体金属纳米颗粒相比,离子系统可以通过离子浓度、质量和电荷进行广泛的调节。离子的非局部软等离子体理论对于连接硬物质和软物质理论的生物和化学系统是相关的,并允许在与固体金属颗粒完全类似的情况下,对电解质中的非经典效应进行全分析。所提出的半经典方法允许研究等离子体光催化,将非局部方面引入电解质-金属相互作用。