Suppr超能文献

制备和表征具有皮升级油滴的可扩展表面纹理,用于细菌-油相互作用的机械研究。

Fabrication and characterization of a scalable surface textured with pico-liter oil drops for mechanistic studies of bacteria-oil interactions.

机构信息

Department of Engineering, Texas A&M University, Corpus Christi, Texas, USA.

Nano Fabrication Center, University of Minnesota, Twin City, Minnesota, USA.

出版信息

Sci Rep. 2018 May 15;8(1):7612. doi: 10.1038/s41598-018-25812-y.

Abstract

Texturing a large surface with oily micro-drops with controlled size, shape and volume provides an unprecedented capability in investigating complex interactions of bacteria, cells and interfaces. It has particular implications in understanding key microbial processes involved in remediation of environmental disasters, such as Deepwater Horizon oil spill. This work presents a development of scalable micro-transfer molding to functionalize a substrate with oily drop array to generate a microcosm mimicking bacteria encountering a rising droplet cloud. The volume of each drop within a large "printed" surface can be tuned by varying base geometry and area with characteristic scales from 5 to 50 μm. Contrary to macroscopic counterparts, drops with non-Laplacian shapes, i.e. sharp corners, that appears to violate Young-Laplacian relationship locally, are produced. Although the drop relaxes into a spherical cap with constant mean curvature, the contact line with sharp corners remains pinned. Relaxation times from initial to asymptotic shape require extraordinarily long time (>7 days). We demonstrate that non-Laplacian drops are the direct results of self-pinning of contact line by nanoparticles in the oil. This technique has been applied to study biofilm formation at the oil-water interface and can be readily extended to other colloidal fluids.

摘要

用具有可控尺寸、形状和体积的油性微滴对大表面进行纹理处理,为研究细菌、细胞和界面的复杂相互作用提供了前所未有的能力。它在理解涉及环境灾难修复的关键微生物过程方面具有特殊意义,例如深水地平线石油泄漏。本工作提出了一种可扩展的微转移成型技术,用于对基底进行油性滴阵列功能化,以生成模拟细菌遇到上升液滴云的微环境。通过改变基底的几何形状和面积,可以在 5 到 50μm 的特征尺度范围内调整大“打印”表面上每个微滴的体积。与宏观对应物相反,会产生局部违反雅可比-拉普拉斯关系的非拉普拉斯形状的液滴,例如尖角。尽管液滴会松弛成具有恒定平均曲率的球形帽,但具有尖角的接触线仍被固定。从初始到渐近形状的松弛时间需要非常长的时间(>7 天)。我们证明,非拉普拉斯液滴是油中纳米颗粒自固定接触线的直接结果。该技术已应用于研究油水界面处的生物膜形成,并且可以很容易地扩展到其他胶体流体。

相似文献

3
Surfactant solutions and porous substrates: spreading and imbibition.
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.
5
Adsorption and adhesiveness of kapok fiber to different oils.
J Hazard Mater. 2015 Oct 15;296:101-111. doi: 10.1016/j.jhazmat.2015.03.040. Epub 2015 Mar 21.
6
7
Characterization and environmental relevance of oil water preparations of fresh and weathered MC-252 Macondo oils used in toxicology testing.
Sci Total Environ. 2017 Jan 15;576:118-128. doi: 10.1016/j.scitotenv.2016.09.171. Epub 2016 Oct 23.
9
Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria.
Mar Pollut Bull. 2016 Mar 15;104(1-2):294-302. doi: 10.1016/j.marpolbul.2016.01.005. Epub 2016 Jan 11.
10
Succession of hydrocarbon-degrading bacteria in the aftermath of the deepwater horizon oil spill in the gulf of Mexico.
Environ Sci Technol. 2013 Oct 1;47(19):10860-7. doi: 10.1021/es401676y. Epub 2013 Sep 19.

引用本文的文献

1
A traveling surface acoustic wave-based micropiezoactuator: A tool for additive- and label-free cell lysis.
Biomicrofluidics. 2024 Sep 11;18(5):054104. doi: 10.1063/5.0209663. eCollection 2024 Sep.

本文引用的文献

1
Soft Lithography.
Angew Chem Int Ed Engl. 1998 Mar 16;37(5):550-575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G.
2
Patterning of Nanoclays on Positively Charged Self-Assembled Monolayers via Micromolding in Capillaries.
Langmuir. 2017 Sep 5;33(35):8799-8804. doi: 10.1021/acs.langmuir.6b04618. Epub 2017 Apr 6.
3
Printable Functional Chips Based on Nanoparticle Assembly.
Small. 2017 Jan;13(4). doi: 10.1002/smll.201503339. Epub 2016 Mar 22.
5
Microfluidic Studies of Biofilm Formation in Dynamic Environments.
J Bacteriol. 2016 Sep 9;198(19):2589-95. doi: 10.1128/JB.00118-16. Print 2016 Oct 1.
6
Single-Step Fabrication of High-Density Microdroplet Arrays of Low-Surface-Tension Liquids.
Adv Mater. 2016 Apr;28(16):3202-8. doi: 10.1002/adma.201505972. Epub 2016 Feb 24.
7
Splitting a droplet for femtoliter liquid patterns and single cell isolation.
ACS Appl Mater Interfaces. 2015 May 6;7(17):9060-5. doi: 10.1021/am509177s. Epub 2015 Mar 29.
8
Interplay of physical mechanisms and biofilm processes: review of microfluidic methods.
Lab Chip. 2015 Jan 7;15(1):23-42. doi: 10.1039/c4lc01095g.
9
Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria.
Science. 2014 Oct 24;346(6208):1251821. doi: 10.1126/science.1251821.
10
Massively parallel patterning of complex 2D and 3D functional polymer brushes by polymer pen lithography.
ACS Appl Mater Interfaces. 2014 Aug 13;6(15):11955-64. doi: 10.1021/am405555e. Epub 2014 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验