Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas, United States of America.
Sci Rep. 2016 Oct 18;6:35290. doi: 10.1038/srep35290.
Understanding how bacteria move close to a surface under various stimuli is crucial for a broad range of microbial processes including biofilm formation, bacterial transport and migration. While prior studies focus on interactions between single stimulus and bacterial suspension, we emphasize on compounding effects of flow shear and solid surfaces on bacterial motility, especially reorientation and tumble. We have applied microfluidics and digital holographic microscopy to capture a large number (>10) of 3D Escherichia coli trajectories near a surface under various flow shear. We find that near-surface flow shear promotes cell reorientation and mitigates the tumble suppression and re-orientation confinement found in a quiescent flow, and consequently enhances surface normal bacterial dispersion. Conditional sampling suggests that two complimentary hydrodynamic mechanisms, Jeffrey Orbit and shear-induced flagella unbundling, are responsible for the enhancement in bacterial tumble motility. These findings imply that flow shear may mitigate cell trapping and prevent biofilm initiation.
理解细菌在各种刺激下如何靠近表面对于广泛的微生物过程至关重要,包括生物膜形成、细菌输送和迁移。尽管先前的研究集中于单个刺激物与细菌悬浮液之间的相互作用,但我们强调了流动剪切和固体表面对细菌运动性的复合影响,特别是重新定向和翻滚。我们已经应用微流控技术和数字全息显微镜来捕捉大量 (>10) 个在各种流动剪切下靠近表面的大肠杆菌轨迹。我们发现,近表面流动剪切促进了细胞的重新定向,并减轻了在静止流中发现的翻滚抑制和重新定向限制,从而增强了表面法向细菌的扩散。条件抽样表明,两种互补的流体动力学机制,杰弗里轨道和剪切诱导的鞭毛解束,负责增强细菌的翻滚运动性。这些发现表明,流动剪切可以减轻细胞的捕获并防止生物膜的形成。