Suppr超能文献

一种基于表面声波传播的微压电致动器:用于无添加剂和无标记细胞裂解的工具。

A traveling surface acoustic wave-based micropiezoactuator: A tool for additive- and label-free cell lysis.

作者信息

Agarwalla Sushama, Singh Sunil Kumar, Duraiswamy Suhanya

机构信息

Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India.

出版信息

Biomicrofluidics. 2024 Sep 11;18(5):054104. doi: 10.1063/5.0209663. eCollection 2024 Sep.

Abstract

We propose a traveling surface acoustic wave (TSAW)-based microfluidic method for cell lysis that enables lysis of any biological entity, without the need for additional additives. Lysis of cells in the sample solution flowing through a poly (dimethyl siloxane) microchannel is enabled by the interaction of cells with TSAWs propagated from gold interdigitated transducers (IDTs) patterned onto a LiNbO piezoelectric substrate, onto which the microchannel was also bonded. Numerical simulations to determine the wave propagation intensities with varying parameters including IDT design, supply voltage, and distance of the channel from the IDT were performed. Experiments were then used to validate the simulations and the best lysis parameters were used to maximize the nucleic acid/protein extraction efficiency (>95%) within few seconds. A comparative analysis of our method with traditional chemical, physical and thermal, as well as the current microfluidic methods for lysis demonstrates the superiority of our method. Our lysis strategy can hence be used independently and/or integrated with other nucleic acid-based technologies or point-of-care devices for the lysis of any pathogen (Gram positives and negatives), eukaryotic cells, and tissues at low voltage (3 V) and frequency (33.17 MHz), without the use of amplifiers.

摘要

我们提出了一种基于表面声波传播(TSAW)的微流控细胞裂解方法,该方法能够裂解任何生物实体,无需额外添加试剂。当样品溶液流经聚二甲基硅氧烷微通道时,通道内的细胞与从金叉指换能器(IDT)传播的表面声波相互作用,从而实现细胞裂解。金叉指换能器被制作在LiNbO压电基板上,微通道也连接在该基板上。我们进行了数值模拟,以确定包括IDT设计、供电电压以及通道与IDT之间距离等不同参数下的波传播强度。随后通过实验验证模拟结果,并使用最佳裂解参数在几秒钟内将核酸/蛋白质提取效率最大化(>95%)。将我们的方法与传统的化学、物理和热裂解方法以及当前的微流控裂解方法进行比较分析,结果表明了我们方法的优越性。因此,我们的裂解策略可独立使用和/或与其他基于核酸的技术或即时检测设备集成,用于在低电压(3V)和低频率(33.17MHz)下裂解任何病原体(革兰氏阳性和阴性菌)、真核细胞和组织,无需使用放大器。

相似文献

本文引用的文献

8
Acoustic Microfluidics.声流控技术。
Annu Rev Anal Chem (Palo Alto Calif). 2020 Jun 12;13(1):17-43. doi: 10.1146/annurev-anchem-090919-102205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验