Laboratory for Biointerfaces , Empa, Swiss Federal Laboratories for Materials Science and Technology , Lerchenfeldstrasse 5 , CH-9014 St. Gallen , Switzerland.
Laboratory for Applied Wood Materials , Empa, Swiss Federal Laboratories for Materials Science and Technology , Überlandstrasse 129 , CH-8600 Dübendorf , Switzerland.
ACS Appl Mater Interfaces. 2018 Jun 13;10(23):20170-20181. doi: 10.1021/acsami.8b04470. Epub 2018 May 29.
Resistance to antibiotics has posed a high demand for novel strategies to fight bacterial infections. Antimicrobial peptides (AMPs) are a promising alternative to conventional antibiotics. However, their poor solubility in water and sensitivity to degradation has limited their application. Here, we report the design of a smart, pH-responsive antimicrobial nanobiocomposite material based on the AMP nisin and 2,2,6,6-tetramethyl-1-piperidinyloxyl-oxidized nanofibrillated cellulose (TONFC). Morphological transformations of the nanoscale structure of nisin functionalized-TONFC fibrils were discovered at pH values between 5.8 and 8.0 using small-angle X-ray scattering. Complementary ζ potential measurements indicate that electrostatic attractions between the negatively charged TONFC surface and the positively charged nisin molecules are responsible for the integration of nisin. Modification of the pH level or increasing the ionic strength reduces the nisin binding capacity of TONFC. Biological evaluation studies using a bioluminescence-based reporter strain of Bacillus subtilis and a clinically relevant strain of Staphylococcus aureus indicated a significantly higher antimicrobial activity of the TONFC-nisin biocomposite compared to the pure nisin against both strains under physiological pH and ionic strength conditions. The in-depth characterization of this new class of antimicrobial biocomposite material based on nanocellulose and nisin may guide the rational design of sustainable antimicrobial materials.
抗生素耐药性对新型策略提出了很高的要求,以对抗细菌感染。抗菌肽(AMPs)是传统抗生素的一种很有前途的替代品。然而,它们在水中的溶解度差和对降解的敏感性限制了它们的应用。在这里,我们报告了一种基于抗菌肽乳链菌肽和 2,2,6,6-四甲基-1-哌啶氧自由基氧化纳米原纤化纤维素(TONFC)的智能、pH 响应抗菌纳米生物复合材料的设计。使用小角 X 射线散射,在 pH 值为 5.8 至 8.0 之间发现了乳链菌肽功能化 TONFC 原纤维的纳米结构形态转变。补充的 ζ 电位测量表明,带负电荷的 TONFC 表面和带正电荷的乳链菌肽分子之间的静电吸引是乳链菌肽整合的原因。调节 pH 值或增加离子强度会降低 TONFC 对乳链菌肽的结合能力。使用枯草芽孢杆菌的生物发光报告菌株和临床相关的金黄色葡萄球菌菌株进行的生物学评价研究表明,与纯乳链菌肽相比,在生理 pH 值和离子强度条件下,TONFC-乳链菌肽生物复合材料对两种菌株的抗菌活性显著更高。对基于纳米纤维素和乳链菌肽的这种新型抗菌生物复合材料的深入表征可能会指导可持续抗菌材料的合理设计。