Suppr超能文献

使用 PSO 增强差分搜索优化器训练径向基函数网络进行风速预测。

Training radial basis function networks for wind speed prediction using PSO enhanced differential search optimizer.

机构信息

Department of Electrical & Electronics Engineering, Anna University Regional Campus, Coimbatore, Tamil Nadu, India.

出版信息

PLoS One. 2018 May 16;13(5):e0196871. doi: 10.1371/journal.pone.0196871. eCollection 2018.

Abstract

This paper presents an integrated hybrid optimization algorithm for training the radial basis function neural network (RBF NN). Training of neural networks is still a challenging exercise in machine learning domain. Traditional training algorithms in general suffer and trap in local optima and lead to premature convergence, which makes them ineffective when applied for datasets with diverse features. Training algorithms based on evolutionary computations are becoming popular due to their robust nature in overcoming the drawbacks of the traditional algorithms. Accordingly, this paper proposes a hybrid training procedure with differential search (DS) algorithm functionally integrated with the particle swarm optimization (PSO). To surmount the local trapping of the search procedure, a new population initialization scheme is proposed using Logistic chaotic sequence, which enhances the population diversity and aid the search capability. To demonstrate the effectiveness of the proposed RBF hybrid training algorithm, experimental analysis on publicly available 7 benchmark datasets are performed. Subsequently, experiments were conducted on a practical application case for wind speed prediction to expound the superiority of the proposed RBF training algorithm in terms of prediction accuracy.

摘要

本文提出了一种用于训练径向基函数神经网络(RBF NN)的集成混合优化算法。神经网络的训练在机器学习领域仍然是一项具有挑战性的任务。传统的训练算法通常存在局部最优和过早收敛的问题,因此当应用于具有不同特征的数据集时,它们的效果并不理想。基于进化计算的训练算法由于其在克服传统算法缺点方面的稳健性而变得越来越流行。因此,本文提出了一种混合训练过程,将差分搜索(DS)算法与粒子群优化(PSO)相结合。为了克服搜索过程中的局部陷阱,提出了一种新的使用 logistic 混沌序列的种群初始化方案,该方案增强了种群多样性并有助于提高搜索能力。为了验证所提出的 RBF 混合训练算法的有效性,对 7 个公开基准数据集进行了实验分析。随后,在风速预测的实际应用案例中进行了实验,以说明所提出的 RBF 训练算法在预测精度方面的优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e61e/5955516/2b0f43241301/pone.0196871.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验