Suppr超能文献

一种用于全局优化问题的粒子群优化新初始化方法。

A New Initialization Approach in Particle Swarm Optimization for Global Optimization Problems.

作者信息

Bangyal Waqas Haider, Hameed Abdul, Alosaimi Wael, Alyami Hashem

机构信息

Dept. of Computer Science, University of Gujrat, Gujrat, Pakistan.

Dept. of Computer Science, Iqra University, Islamabad, Pakistan.

出版信息

Comput Intell Neurosci. 2021 May 17;2021:6628889. doi: 10.1155/2021/6628889. eCollection 2021.

Abstract

Particle swarm optimization (PSO) algorithm is a population-based intelligent stochastic search technique used to search for food with the intrinsic manner of bee swarming. PSO is widely used to solve the diverse problems of optimization. Initialization of population is a critical factor in the PSO algorithm, which considerably influences the diversity and convergence during the process of PSO. Quasirandom sequences are useful for initializing the population to improve the diversity and convergence, rather than applying the random distribution for initialization. The performance of PSO is expanded in this paper to make it appropriate for the optimization problem by introducing a new initialization technique named WELL with the help of low-discrepancy sequence. To solve the optimization problems in large-dimensional search spaces, the proposed solution is termed as WE-PSO. The suggested solution has been verified on fifteen well-known unimodal and multimodal benchmark test problems extensively used in the literature, Moreover, the performance of WE-PSO is compared with the standard PSO and two other initialization approaches Sobol-based PSO (SO-PSO) and Halton-based PSO (H-PSO). The findings indicate that WE-PSO is better than the standard multimodal problem-solving techniques. The results validate the efficacy and effectiveness of our approach. In comparison, the proposed approach is used for artificial neural network (ANN) learning and contrasted to the standard backpropagation algorithm, standard PSO, H-PSO, and SO-PSO, respectively. The results of our technique has a higher accuracy score and outperforms traditional methods. Also, the outcome of our work presents an insight on how the proposed initialization technique has a high effect on the quality of cost function, integration, and diversity aspects.

摘要

粒子群优化(PSO)算法是一种基于群体的智能随机搜索技术,它以蜜蜂群体的固有方式来寻找食物。PSO被广泛用于解决各种优化问题。群体初始化是PSO算法中的一个关键因素,它在很大程度上影响着PSO过程中的多样性和收敛性。拟随机序列对于群体初始化以提高多样性和收敛性很有用,而不是采用随机分布进行初始化。本文通过借助低差异序列引入一种名为WELL的新初始化技术,扩展了PSO的性能,使其适用于优化问题。为了解决大维度搜索空间中的优化问题,所提出的解决方案被称为WE-PSO。所建议的解决方案已在文献中广泛使用的15个著名的单峰和多峰基准测试问题上得到验证。此外,还将WE-PSO的性能与标准PSO以及其他两种初始化方法基于索博尔序列的PSO(SO-PSO)和基于哈顿序列的PSO(H-PSO)进行了比较。研究结果表明,WE-PSO优于标准的多峰问题解决技术。这些结果验证了我们方法的有效性。相比之下,所提出的方法用于人工神经网络(ANN)学习,并分别与标准反向传播算法、标准PSO、H-PSO和SO-PSO进行对比。我们技术的结果具有更高的准确率得分,并且优于传统方法。此外,我们工作的结果还揭示了所提出的初始化技术如何对成本函数质量、整合和多样性方面产生高度影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验