Suppr超能文献

噬菌体在盐水条件下的感染性

Bacteriophage Infectivity Against in Saline Conditions.

作者信息

Scarascia Giantommaso, Yap Scott A, Kaksonen Anna H, Hong Pei-Ying

机构信息

Biological and Environmental Science & Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.

Land and Water, Commonwealth Scientific and Industrial Research Organization, Canberra, ACT, Australia.

出版信息

Front Microbiol. 2018 May 2;9:875. doi: 10.3389/fmicb.2018.00875. eCollection 2018.

Abstract

is a ubiquitous member of marine biofilm, and reduces thiosulfate to produce toxic hydrogen sulfide gas. In this study, lytic bacteriophages were isolated and applied to inhibit the growth of in planktonic mode at different temperature, pH, and salinity. Bacteriophages showed optimal infectivity at a multiplicity of infection of 10 in saline conditions, and demonstrated lytic abilities over all tested temperature (25, 30, 37, and 45°C) and pH 6-9. Planktonic exhibited significantly longer lag phase and lower specific growth rates upon exposure to bacteriophages. Bacteriophages were subsequently applied to -enriched biofilm and were determined to lower the relative abundance of -related taxa from 0.17 to 5.58% in controls to 0.01-0.61% in treated microbial communities. The relative abundance of , and decreased, possibly due to the phage-induced disruption of the biofilm matrix. Lastly, when applied to mitigate biofouling of ultrafiltration membranes, bacteriophages were determined to reduce the transmembrane pressure increase by 18% when utilized alone, and by 49% when used in combination with citric acid. The combined treatment was more effective compared with the citric acid treatment alone, which reported ca. 30% transmembrane pressure reduction. Collectively, the findings demonstrated that bacteriophages can be used as a biocidal agent to mitigate undesirable -associated problems in seawater applications.

摘要

是海洋生物膜中普遍存在的成员,它能将硫代硫酸盐还原以产生有毒的硫化氢气体。在本研究中,分离出裂解性噬菌体并将其应用于在不同温度、pH值和盐度下以浮游模式抑制其生长。噬菌体在盐溶液条件下感染复数为10时表现出最佳感染性,并在所有测试温度(25、30、37和45°C)和pH值6 - 9下都表现出裂解能力。浮游的在暴露于噬菌体后表现出显著更长的延迟期和更低的比生长速率。随后将噬菌体应用于富含的生物膜,并确定其能将与相关分类群的相对丰度从对照中的0.17%至5.58%降低至处理后微生物群落中的0.01% - 0.61%。、和的相对丰度下降,可能是由于噬菌体诱导的生物膜基质破坏。最后,当应用于减轻超滤膜的生物污染时,单独使用噬菌体可使跨膜压力增加降低18%,与柠檬酸联合使用时可降低49%。联合处理比单独的柠檬酸处理更有效,单独的柠檬酸处理报告的跨膜压力降低约30%。总体而言,这些发现表明噬菌体可作为一种杀生物剂来减轻海水应用中与相关的不良问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/985f/5942161/490ee0d3acb2/fmicb-09-00875-g0001.jpg

相似文献

1
Bacteriophage Infectivity Against in Saline Conditions.
Front Microbiol. 2018 May 2;9:875. doi: 10.3389/fmicb.2018.00875. eCollection 2018.
2
Identification and Characterization of New Bacteriophages to Control Multidrug-Resistant Biofilm on Endotracheal Tubes.
Front Microbiol. 2020 Oct 6;11:580779. doi: 10.3389/fmicb.2020.580779. eCollection 2020.
3
Isolation and Characterization of Bacteriophages Active against Strains Isolated from Diabetic Foot Infections.
Arch Razi Inst. 2022 Dec 31;77(6):2187-2200. doi: 10.22092/ARI.2022.359032.2357. eCollection 2022 Dec.
5
Isolation and characterization of bacteriophage to control multidrug-resistant Pseudomonas aeruginosa planktonic cells and biofilm.
Biologicals. 2020 Jan;63:89-96. doi: 10.1016/j.biologicals.2019.10.003. Epub 2019 Nov 2.
6
Preclinical Development of a Bacteriophage Cocktail for Treating Multidrug Resistant Infections.
Microorganisms. 2021 Sep 21;9(9):2001. doi: 10.3390/microorganisms9092001.
8
A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions.
Microb Biotechnol. 2016 Jan;9(1):61-74. doi: 10.1111/1751-7915.12316. Epub 2015 Sep 8.

引用本文的文献

1
Bacteriophage application in inhibiting corrosion- producing bacteria.
BMC Microbiol. 2025 Apr 23;25(1):241. doi: 10.1186/s12866-025-03952-2.
2
Physiochemical characterization of a potential phage MKP-1 and analysis of its application in reducing biofilm formation.
Front Microbiol. 2024 Jul 17;15:1397447. doi: 10.3389/fmicb.2024.1397447. eCollection 2024.
3
A systematic review of the use of bacteriophages for in vitro biofilm control.
Eur J Clin Microbiol Infect Dis. 2023 Aug;42(8):919-928. doi: 10.1007/s10096-023-04638-1. Epub 2023 Jul 5.
4
UV and bacteriophages as a chemical-free approach for cleaning membranes from anaerobic bioreactors.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2016529118.

本文引用的文献

2
Quorum quenching bacteria can be used to inhibit the biofouling of reverse osmosis membranes.
Water Res. 2017 Apr 1;112:29-37. doi: 10.1016/j.watres.2017.01.028. Epub 2017 Jan 18.
3
Exopolysaccharides Play a Role in the Swarming of the Benthic Bacterium Pseudoalteromonas sp. SM9913.
Front Microbiol. 2016 Apr 5;7:473. doi: 10.3389/fmicb.2016.00473. eCollection 2016.
4
A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions.
Microb Biotechnol. 2016 Jan;9(1):61-74. doi: 10.1111/1751-7915.12316. Epub 2015 Sep 8.
5
Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections.
J Virol. 2015 Aug;89(15):7449-56. doi: 10.1128/JVI.00385-15. Epub 2015 May 13.
6
Does chlorination of seawater reverse osmosis membranes control biofouling?
Water Res. 2015 Jul 1;78:84-97. doi: 10.1016/j.watres.2015.03.029. Epub 2015 Apr 9.
7
In vitro and in vivo antibacterial activity of environmental bacteriophages against Pseudomonas aeruginosa strains from cystic fibrosis patients.
Appl Microbiol Biotechnol. 2015 Jul;99(14):6021-33. doi: 10.1007/s00253-015-6492-6. Epub 2015 Mar 12.
8
Bacteriophage therapy for membrane biofouling in membrane bioreactors and antibiotic-resistant bacterial biofilms.
Biotechnol Bioeng. 2015 Aug;112(8):1644-54. doi: 10.1002/bit.25574. Epub 2015 Jun 15.
10
The role of solution conditions in the bacteriophage PP7 capsid charge regulation.
Biophys J. 2014 Oct 21;107(8):1970-1979. doi: 10.1016/j.bpj.2014.08.032.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验