Suppr超能文献

噬菌体疗法:治疗铜绿假单胞菌感染的一项进展。

Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections.

作者信息

Pires Diana P, Vilas Boas Diana, Sillankorva Sanna, Azeredo Joana

机构信息

CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal.

CEB-Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal

出版信息

J Virol. 2015 Aug;89(15):7449-56. doi: 10.1128/JVI.00385-15. Epub 2015 May 13.

Abstract

Antimicrobial resistance constitutes one of the major worldwide public health concerns. Bacteria are becoming resistant to the vast majority of antibiotics, and nowadays, a common infection can be fatal. To address this situation, the use of phages for the treatment of bacterial infections has been extensively studied as an alternative therapeutic strategy. Since Pseudomonas aeruginosa is one of the most common causes of health care-associated infections, many studies have reported the in vitro and in vivo antibacterial efficacy of phage therapy against this bacterium. This review collects data of all the P. aeruginosa phages sequenced to date, providing a better understanding about their biodiversity. This review further addresses the in vitro and in vivo results obtained by using phages to treat or prevent P. aeruginosa infections as well as the major hurdles associated with this therapy.

摘要

抗菌耐药性是全球主要的公共卫生问题之一。细菌正变得对绝大多数抗生素产生耐药性,如今,一种常见感染可能会致命。为应对这种情况,作为一种替代治疗策略,噬菌体用于治疗细菌感染已得到广泛研究。由于铜绿假单胞菌是医疗保健相关感染最常见的病因之一,许多研究报告了噬菌体疗法针对该细菌的体外和体内抗菌效果。本综述收集了迄今为止所有已测序的铜绿假单胞菌噬菌体的数据,以便更好地了解它们的生物多样性。本综述还进一步探讨了使用噬菌体治疗或预防铜绿假单胞菌感染所取得的体外和体内研究结果,以及与这种疗法相关的主要障碍。

相似文献

1
Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections.
J Virol. 2015 Aug;89(15):7449-56. doi: 10.1128/JVI.00385-15. Epub 2015 May 13.
3
Two Novel Bacteriophages Improve Survival in Infection and Mouse Acute Pneumonia Models Infected with Extensively Drug-Resistant .
Appl Environ Microbiol. 2019 Apr 18;85(9). doi: 10.1128/AEM.02900-18. Print 2019 May 1.
4
Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models.
J Microbiol. 2011 Dec;49(6):994-9. doi: 10.1007/s12275-011-1512-4. Epub 2011 Dec 28.
5
Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy.
Adv Virus Res. 2014;88:227-78. doi: 10.1016/B978-0-12-800098-4.00005-2.
7
Relevance of the bacteriophage adherence to mucus model for phages.
Microbiol Spectr. 2024 Aug 6;12(8):e0352023. doi: 10.1128/spectrum.03520-23. Epub 2024 Jun 24.
8
9
Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model.
Antimicrob Agents Chemother. 2007 Jun;51(6):1934-8. doi: 10.1128/AAC.01028-06. Epub 2007 Mar 26.
10
Bacteriophages and Their Clinical Applications.
Viruses. 2024 Jun 29;16(7):1051. doi: 10.3390/v16071051.

引用本文的文献

3
Biotherapeutic potential of different fractions of cell-free supernatants from against .
Front Cell Infect Microbiol. 2025 Jun 30;15:1608897. doi: 10.3389/fcimb.2025.1608897. eCollection 2025.
5
Systematic bacteriophage selection for the lysis of multiple strains.
Front Cell Infect Microbiol. 2025 May 23;15:1597009. doi: 10.3389/fcimb.2025.1597009. eCollection 2025.
7
Phage M198 and Its Therapeutic Potential.
Viruses. 2025 Jan 15;17(1):115. doi: 10.3390/v17010115.
8
Effects of the combination of anti-PcrV antibody and bacteriophage therapy in a mouse model of pneumonia.
Microbiol Spectr. 2024 Oct 23;12(12):e0178124. doi: 10.1128/spectrum.01781-24.
9
PlzR regulates type IV pili assembly in Pseudomonas aeruginosa via PilZ binding.
Nat Commun. 2024 Oct 8;15(1):8717. doi: 10.1038/s41467-024-52732-5.

本文引用的文献

1
Experimental phage therapy of burn wound infection: difficult first steps.
Int J Burns Trauma. 2014 Oct 26;4(2):66-73. eCollection 2014.
2
A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages.
PLoS One. 2014 Sep 26;9(9):e106628. doi: 10.1371/journal.pone.0106628. eCollection 2014.
3
Pseudomonas bacteriophage isolation and production.
Methods Mol Biol. 2014;1149:23-32. doi: 10.1007/978-1-4939-0473-0_4.
6
Twelve previously unknown phage genera are ubiquitous in global oceans.
Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12798-803. doi: 10.1073/pnas.1305956110. Epub 2013 Jul 15.
7
Pouring salt on a wound: Pseudomonas aeruginosa virulence factors alter Na+ and Cl- flux in the lung.
J Bacteriol. 2013 Sep;195(18):4013-9. doi: 10.1128/JB.00339-13. Epub 2013 Jul 8.
8
Phage cocktails and the future of phage therapy.
Future Microbiol. 2013 Jun;8(6):769-83. doi: 10.2217/fmb.13.47.
9
The susceptibility of Pseudomonas aeruginosa strains from cystic fibrosis patients to bacteriophages.
PLoS One. 2013 Apr 24;8(4):e60575. doi: 10.1371/journal.pone.0060575. Print 2013.
10
Phage renaissance: new hope against antibiotic resistance.
Environ Health Perspect. 2013 Feb;121(2):a48-53. doi: 10.1289/ehp.121-a48.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验