Suppr超能文献

用于联合管理和预测胶质瘤患者IDH1状态的多标签归纳矩阵补全

Multi-label Inductive Matrix Completion for Joint MGMT and IDH1 Status Prediction for Glioma Patients.

作者信息

Chen Lei, Zhang Han, Thung Kim-Han, Liu Luyan, Lu Junfeng, Wu Jinsong, Wang Qian, Shen Dinggang

机构信息

Jiangsu Key Laboratory of Big Data Security and Intelligent Processing, Nanjing University of Posts and Telecommunications, Nanjing, China.

Department of Radiology and BRIC, University of North Carolina, Chapel Hill, USA.

出版信息

Med Image Comput Comput Assist Interv. 2017 Sep;10434:450-458. doi: 10.1007/978-3-319-66185-8_51. Epub 2017 Sep 4.

Abstract

MGMT promoter methylation and IDH1 mutation in high-grade gliomas (HGG) have proven to be the two important molecular indicators associated with better prognosis. Traditionally, the statuses of MGMT and IDH1 are obtained via surgical biopsy, which is laborious, invasive and time-consuming. Accurate presurgical prediction of their statuses based on preoperative imaging data is of great clinical value towards better treatment plan. In this paper, we propose a novel Multi-label Matrix Completion (MIMC) model, highlighted by the online inductive learning strategy, to jointly predict both MGMT and IDH1 statuses. Our MIMC model uses the training subjects with possibly missing MGMT/IDH1 labels, leverages the unlabeled testing subjects as a supplement to the limited training dataset. More importantly, we learn inductive labels, instead of directly using transductive labels, as the prediction results for the testing subjects, to alleviate the overfitting issue in small-sample-size studies. Furthermore, we design an optimization algorithm with guaranteed convergence based on the block coordinate descent method to solve the multivariate non-smooth MIMC model. Finally, by using a precious single-center multi-modality presurgical brain imaging and genetic dataset of primary HGG, we demonstrate that our method can produce accurate prediction results, outperforming the previous widely-used single- or multi-task machine learning methods. This study shows the promise of utilizing imaging-derived brain connectome phenotypes for prognosis of HGG in a non-invasive manner.

摘要

在高级别胶质瘤(HGG)中,MGMT启动子甲基化和IDH1突变已被证明是与较好预后相关的两个重要分子指标。传统上,MGMT和IDH1的状态是通过手术活检获得的,这既费力、具有侵入性又耗时。基于术前影像数据对其状态进行准确的术前预测对于制定更好的治疗方案具有重要的临床价值。在本文中,我们提出了一种新颖的多标签矩阵补全(MIMC)模型,该模型以在线归纳学习策略为突出特点,用于联合预测MGMT和IDH1的状态。我们的MIMC模型使用可能缺少MGMT/IDH1标签的训练对象,利用未标记的测试对象作为对有限训练数据集的补充。更重要的是,我们学习归纳标签,而不是直接使用转导标签作为测试对象的预测结果,以缓解小样本量研究中的过拟合问题。此外,我们基于块坐标下降法设计了一种具有收敛保证的优化算法来求解多元非光滑MIMC模型。最后,通过使用一个珍贵的原发性HGG单中心多模态术前脑成像和基因数据集,我们证明我们的方法可以产生准确的预测结果,优于先前广泛使用的单任务或多任务机器学习方法。这项研究表明了以非侵入性方式利用成像衍生的脑连接组表型进行HGG预后评估的前景。

相似文献

1
Multi-label Inductive Matrix Completion for Joint MGMT and IDH1 Status Prediction for Glioma Patients.
Med Image Comput Comput Assist Interv. 2017 Sep;10434:450-458. doi: 10.1007/978-3-319-66185-8_51. Epub 2017 Sep 4.
3
The next generation of glioma biomarkers: MGMT methylation, BRAF fusions and IDH1 mutations.
Brain Pathol. 2011 Jan;21(1):74-87. doi: 10.1111/j.1750-3639.2010.00454.x.
7
Identification of MGMT promoter methylation sites correlating with gene expression and IDH1 mutation in gliomas.
Tumour Biol. 2016 Oct;37(10):13571-13579. doi: 10.1007/s13277-016-5153-4. Epub 2016 Jul 28.
9
Potential Role of Methylation Marker in Glioma Supporting Clinical Decisions.
Int J Mol Sci. 2016 Nov 10;17(11):1876. doi: 10.3390/ijms17111876.
10
Prognostic or predictive value of MGMT promoter methylation in gliomas depends on IDH1 mutation.
Neurology. 2013 Oct 22;81(17):1515-22. doi: 10.1212/WNL.0b013e3182a95680. Epub 2013 Sep 25.

引用本文的文献

2
Accuracy of Radiomics in Predicting Mutation Status in Diffuse Gliomas: A Bivariate Meta-Analysis.
Radiol Artif Intell. 2024 Jan;6(1):e220257. doi: 10.1148/ryai.220257.
3
Alternations and Applications of the Structural and Functional Connectome in Gliomas: A Mini-Review.
Front Neurosci. 2022 Apr 11;16:856808. doi: 10.3389/fnins.2022.856808. eCollection 2022.
4
Assessing Versatile Machine Learning Models for Glioma Radiogenomic Studies across Hospitals.
Cancers (Basel). 2021 Jul 19;13(14):3611. doi: 10.3390/cancers13143611.
5
Putting the data before the algorithm in big data addressing personalized healthcare.
NPJ Digit Med. 2019 Aug 19;2:78. doi: 10.1038/s41746-019-0157-2. eCollection 2019.
7
Machine learning studies on major brain diseases: 5-year trends of 2014-2018.
Jpn J Radiol. 2019 Jan;37(1):34-72. doi: 10.1007/s11604-018-0794-4. Epub 2018 Nov 29.

本文引用的文献

1
Outcome Prediction for Patient with High-Grade Gliomas from Brain Functional and Structural Networks.
Med Image Comput Comput Assist Interv. 2016 Oct;9901:26-34. doi: 10.1007/978-3-319-46723-8_4. Epub 2016 Oct 2.
2
Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas.
Neuro Oncol. 2017 Jan;19(1):109-117. doi: 10.1093/neuonc/now121. Epub 2016 Jun 26.
3
MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas.
Med Phys. 2016 Jun;43(6):2835-2844. doi: 10.1118/1.4948668.
4
MR Imaging-Based Analysis of Glioblastoma Multiforme: Estimation of IDH1 Mutation Status.
AJNR Am J Neuroradiol. 2016 Jan;37(1):58-65. doi: 10.3174/ajnr.A4491. Epub 2015 Sep 24.
5
Matrix Completion for Weakly-Supervised Multi-Label Image Classification.
IEEE Trans Pattern Anal Mach Intell. 2015 Jan;37(1):121-35. doi: 10.1109/TPAMI.2014.2343234.
6
GRETNA: a graph theoretical network analysis toolbox for imaging connectomics.
Front Hum Neurosci. 2015 Jun 30;9:386. doi: 10.3389/fnhum.2015.00386. eCollection 2015.
7
PANDA: a pipeline toolbox for analyzing brain diffusion images.
Front Hum Neurosci. 2013 Feb 21;7:42. doi: 10.3389/fnhum.2013.00042. eCollection 2013.
8
DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI.
Front Syst Neurosci. 2010 May 14;4:13. doi: 10.3389/fnsys.2010.00013. eCollection 2010.
9
Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma.
Cancer Cell. 2010 May 18;17(5):510-22. doi: 10.1016/j.ccr.2010.03.017. Epub 2010 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验