Suppr超能文献

基于多模态神经影像的多通道 3D 深度特征学习在脑肿瘤患者生存时间预测中的应用。

Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages.

机构信息

Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA.

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA.

出版信息

Sci Rep. 2019 Jan 31;9(1):1103. doi: 10.1038/s41598-018-37387-9.

Abstract

High-grade gliomas are the most aggressive malignant brain tumors. Accurate pre-operative prognosis for this cohort can lead to better treatment planning. Conventional survival prediction based on clinical information is subjective and could be inaccurate. Recent radiomics studies have shown better prognosis by using carefully-engineered image features from magnetic resonance images (MRI). However, feature engineering is usually time consuming, laborious and subjective. Most importantly, the engineered features cannot effectively encode other predictive but implicit information provided by multi-modal neuroimages. We propose a two-stage learning-based method to predict the overall survival (OS) time of high-grade gliomas patient. At the first stage, we adopt deep learning, a recently dominant technique of artificial intelligence, to automatically extract implicit and high-level features from multi-modal, multi-channel preoperative MRI such that the features are competent of predicting survival time. Specifically, we utilize not only contrast-enhanced T1 MRI, but also diffusion tensor imaging (DTI) and resting-state functional MRI (rs-fMRI), for computing multiple metric maps (including various diffusivity metric maps derived from DTI, and also the frequency-specific brain fluctuation amplitude maps and local functional connectivity anisotropy-related metric maps derived from rs-fMRI) from 68 high-grade glioma patients with different survival time. We propose a multi-channel architecture of 3D convolutional neural networks (CNNs) for deep learning upon those metric maps, from which high-level predictive features are extracted for each individual patch of these maps. At the second stage, those deeply learned features along with the pivotal limited demographic and tumor-related features (such as age, tumor size and histological type) are fed into a support vector machine (SVM) to generate the final prediction result (i.e., long or short overall survival time). The experimental results demonstrate that this multi-model, multi-channel deep survival prediction framework achieves an accuracy of 90.66%, outperforming all the competing methods. This study indicates highly demanded effectiveness on prognosis of deep learning technique in neuro-oncological applications for better individualized treatment planning towards precision medicine.

摘要

高级别胶质瘤是最具侵袭性的恶性脑肿瘤。对这一队列进行准确的术前预后可以帮助制定更好的治疗计划。基于临床信息的传统生存预测是主观的,可能不准确。最近的放射组学研究表明,使用磁共振成像(MRI)精心设计的图像特征可以更好地预测预后。然而,特征工程通常既耗时又费力,而且具有主观性。最重要的是,所设计的特征无法有效地编码多模态神经影像提供的其他预测但隐含的信息。我们提出了一种基于两阶段学习的方法来预测高级别脑肿瘤患者的总生存期(OS)。在第一阶段,我们采用深度学习,这是一种最近占主导地位的人工智能技术,从多模态、多通道术前 MRI 中自动提取隐含的高级特征,使这些特征能够预测生存时间。具体来说,我们不仅利用对比增强 T1 MRI,还利用弥散张量成像(DTI)和静息态功能磁共振成像(rs-fMRI),从 68 名生存时间不同的高级别脑肿瘤患者中计算出多个度量图(包括来自 DTI 的各种弥散度量图,以及来自 rs-fMRI 的频率特异性脑波动幅度图和局部功能连接各向异性相关度量图)。我们提出了一种 3D 卷积神经网络(CNN)的多通道架构,用于对这些度量图进行深度学习,从这些图中提取每个个体图块的高级预测特征。在第二阶段,将这些深入学习的特征以及关键的有限人口统计学和肿瘤相关特征(如年龄、肿瘤大小和组织学类型)输入支持向量机(SVM)中,生成最终的预测结果(即长或短的总生存期)。实验结果表明,这种多模态、多通道的深度学习生存预测框架的准确率达到 90.66%,优于所有竞争方法。这项研究表明,深度学习技术在神经肿瘤学应用中的预后具有很高的需求,有助于制定更好的个体化治疗计划,实现精准医疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f92/6355868/b56ee9c21b5d/41598_2018_37387_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验