Suppr超能文献

由 MARK3 隐性致病变异引起的视力障碍和进行性眼球痨

Visual impairment and progressive phthisis bulbi caused by recessive pathogenic variant in MARK3.

机构信息

Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.

出版信息

Hum Mol Genet. 2018 Aug 1;27(15):2703-2711. doi: 10.1093/hmg/ddy180.

Abstract

Developmental eye defects often severely reduce vision. Despite extensive efforts, for a substantial fraction of these cases the molecular causes are unknown. Recessive eye disorders are frequent in consanguineous populations and such large families with multiple affected individuals provide an opportunity to identify recessive causative genes. We studied a Pakistani consanguineous family with three affected individuals with congenital vision loss and progressive eye degeneration. The family was analyzed by exome sequencing of one affected individual and genotyping of all family members. We have identified a non-synonymous homozygous variant (NM_001128918.2: c.1708C > G: p.Arg570Gly) in the MARK3 gene as the likely cause of the phenotype. Given that MARK3 is highly conserved in flies (I: 55%; S: 67%) we knocked down the MARK3 homologue, par-1, in the eye during development. This leads to a significant reduction in eye size, a severe loss of photoreceptors and loss of vision based on electroretinogram (ERG) recordings. Expression of the par-1 p.Arg792Gly mutation (equivalent to the MARK3 variant found in patients) in developing fly eyes also induces loss of eye tissue and reduces the ERG signals. The data in flies and human indicate that the MARK3 variant corresponds to a loss of function. We conclude that the identified mutation in MARK3 establishes a new gene-disease link, since it likely causes structural abnormalities during eye development and visual impairment in humans, and that the function of MARK3/par-1 is evolutionarily conserved in eye development.

摘要

发育性眼部缺陷常严重降低视力。尽管付出了广泛的努力,但对于这些病例中的很大一部分,其分子病因仍未知。隐性眼部疾病在近亲人群中很常见,而这些有多个受影响个体的大家庭为识别隐性致病基因提供了机会。我们研究了一个巴基斯坦近亲家庭,该家庭中有 3 名患有先天性视力丧失和进行性眼部退化的个体。通过对一名受影响个体进行外显子组测序和对所有家族成员进行基因分型,对该家庭进行了分析。我们在 MARK3 基因中发现了一个非同义纯合变异(NM_001128918.2:c.1708C>G:p.Arg570Gly),该变异可能是表型的原因。鉴于 MARK3 在果蝇中高度保守(I:55%;S:67%),我们在发育过程中敲低了眼部的 MARK3 同源物 par-1。这导致眼睛尺寸显著减小,光感受器严重丧失,以及根据视网膜电图(ERG)记录的视力丧失。在发育中的果蝇眼中表达 par-1 p.Arg792Gly 突变(相当于在患者中发现的 MARK3 变异)也会诱导眼组织丧失并降低 ERG 信号。果蝇和人类的数据表明,MARK3 变异对应于功能丧失。我们得出结论,MARK3 中鉴定的突变建立了一个新的基因-疾病联系,因为它可能导致人类眼部发育过程中的结构异常和视力损害,并且 MARK3/par-1 的功能在眼部发育中是进化保守的。

相似文献

1
Visual impairment and progressive phthisis bulbi caused by recessive pathogenic variant in MARK3.
Hum Mol Genet. 2018 Aug 1;27(15):2703-2711. doi: 10.1093/hmg/ddy180.
2
Homozygous Variant in ARL3 Causes Autosomal Recessive Cone Rod Dystrophy.
Invest Ophthalmol Vis Sci. 2019 Nov 1;60(14):4811-4819. doi: 10.1167/iovs.19-27263.
7
Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model.
Hum Mol Genet. 2009 Jan 1;18(1):164-77. doi: 10.1093/hmg/ddn326. Epub 2008 Oct 17.
8
Identification of a novel mutation in the CDHR1 gene in a family with recessive retinal degeneration.
Arch Ophthalmol. 2012 Oct;130(10):1301-8. doi: 10.1001/archophthalmol.2012.1906.

引用本文的文献

4
Integrating non-mammalian model organisms in the diagnosis of rare genetic diseases in humans.
Nat Rev Genet. 2024 Jan;25(1):46-60. doi: 10.1038/s41576-023-00633-6. Epub 2023 Jul 25.
5
FOXI3 pathogenic variants cause one form of craniofacial microsomia.
Nat Commun. 2023 Apr 11;14(1):2026. doi: 10.1038/s41467-023-37703-6.
7
Comparative Genomics Sheds Light on the Convergent Evolution of Miniaturized Wasps.
Mol Biol Evol. 2021 Dec 9;38(12):5539-5554. doi: 10.1093/molbev/msab273.
8
Using to drive the diagnosis and understand the mechanisms of rare human diseases.
Development. 2020 Sep 28;147(21):dev191411. doi: 10.1242/dev.191411.
10
Loss- or Gain-of-Function Mutations in ACOX1 Cause Axonal Loss via Different Mechanisms.
Neuron. 2020 May 20;106(4):589-606.e6. doi: 10.1016/j.neuron.2020.02.021. Epub 2020 Mar 12.

本文引用的文献

1
Genetics of intellectual disability in consanguineous families.
Mol Psychiatry. 2019 Jul;24(7):1027-1039. doi: 10.1038/s41380-017-0012-2. Epub 2018 Jan 4.
3
MARRVEL: Integration of Human and Model Organism Genetic Resources to Facilitate Functional Annotation of the Human Genome.
Am J Hum Genet. 2017 Jun 1;100(6):843-853. doi: 10.1016/j.ajhg.2017.04.010. Epub 2017 May 11.
4
DLG5 connects cell polarity and Hippo signaling protein networks by linking PAR-1 with MST1/2.
Genes Dev. 2016 Dec 15;30(24):2696-2709. doi: 10.1101/gad.284539.116.
5
Biallelic Mutations in MITF Cause Coloboma, Osteopetrosis, Microphthalmia, Macrocephaly, Albinism, and Deafness.
Am J Hum Genet. 2016 Dec 1;99(6):1388-1394. doi: 10.1016/j.ajhg.2016.11.004. Epub 2016 Nov 23.
6
Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016 Aug 18;536(7616):285-91. doi: 10.1038/nature19057.
7
Pathogenic Variants in PIGG Cause Intellectual Disability with Seizures and Hypotonia.
Am J Hum Genet. 2016 Apr 7;98(4):615-26. doi: 10.1016/j.ajhg.2016.02.007. Epub 2016 Mar 17.
8
CATCHing putative causative variants in consanguineous families.
BMC Bioinformatics. 2015 Sep 28;16:310. doi: 10.1186/s12859-015-0727-5.
9
GeneMatcher: a matching tool for connecting investigators with an interest in the same gene.
Hum Mutat. 2015 Oct;36(10):928-30. doi: 10.1002/humu.22844. Epub 2015 Aug 13.
10
The Status of RPE65 Gene Therapy Trials: Safety and Efficacy.
Cold Spring Harb Perspect Med. 2015 Jan 29;5(9):a017285. doi: 10.1101/cshperspect.a017285.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验