Jagga Zeenia, Gupta Dinesh
Bioinformatics Laboratory, Structural & Computational Biology Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110 067, India.
Per Med. 2015 Aug;12(4):371-387. doi: 10.2217/pme.15.5.
The patterns identified from the systematically collected molecular profiles of patient tumor samples, along with clinical metadata, can assist personalized treatments for effective management of cancer patients with similar molecular subtypes. There is an unmet need to develop computational algorithms for cancer diagnosis, prognosis and therapeutics that can identify complex patterns and help in classifications based on plethora of emerging cancer research outcomes in public domain. Machine learning, a branch of artificial intelligence, holds a great potential for pattern recognition in cryptic cancer datasets, as evident from recent literature survey. In this review, we focus on the current status of machine learning applications in cancer research, highlighting trends and analyzing major achievements, roadblocks and challenges toward its implementation in clinics.
从系统收集的患者肿瘤样本分子图谱以及临床元数据中识别出的模式,可辅助针对具有相似分子亚型的癌症患者进行个性化治疗,以实现有效管理。基于公共领域大量新出现的癌症研究成果,开发用于癌症诊断、预后和治疗的计算算法,以识别复杂模式并帮助进行分类,这一需求尚未得到满足。机器学习作为人工智能的一个分支,在隐秘的癌症数据集中进行模式识别具有巨大潜力,最近的文献调查已证明这一点。在本综述中,我们关注机器学习在癌症研究中的应用现状,突出其趋势并分析主要成就、障碍以及在临床实施中面临的挑战。