Suppr超能文献

基于基质相关血浆生物标志物的集成机器学习模型识别 HFpEF 患者。

Ensemble machine learning model identifies patients with HFpEF from matrix-related plasma biomarkers.

机构信息

Department of Bioengineering, Clemson University, Clemson, South Carolina.

Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina.

出版信息

Am J Physiol Heart Circ Physiol. 2022 May 1;322(5):H798-H805. doi: 10.1152/ajpheart.00497.2021. Epub 2022 Mar 11.

Abstract

Arterial hypertension can lead to structural changes within the heart including left ventricular hypertrophy (LVH) and eventually heart failure with preserved ejection fraction (HFpEF). The initial diagnosis of HFpEF is costly and generally based on later stage remodeling; thus, improved predictive diagnostic tools offer potential clinical benefit. Recent work has shown predictive value of multibiomarker plasma panels for the classification of patients with LVH and HFpEF. We hypothesized that machine learning algorithms could substantially improve the predictive value of circulating plasma biomarkers by leveraging more sophisticated statistical approaches. In this work, we developed an ensemble classification algorithm for the diagnosis of HFpEF within a population of 480 individuals including patients with HFpEF, patients with LVH, and referent control patients. Algorithms showed strong diagnostic performance with receiver-operating-characteristic curve (ROC) areas of 0.92 for identifying patients with LVH and 0.90 for identifying patients with HFpEF using demographic information, plasma biomarkers related to extracellular matrix remodeling, and echocardiogram data. More impressively, the ensemble algorithm produced an ROC area of 0.88 for HFpEF diagnosis using only demographic and plasma panel data. Our findings demonstrate that machine learning-based classification algorithms show promise as a noninvasive diagnostic tool for HFpEF, while also suggesting priority biomarkers for future mechanistic studies to elucidate more specific regulatory roles. Machine learning algorithms correctly classified patients with heart failure with preserved ejection fraction with over 90% area under receiver-operating-characteristic curves. Classifications using multidomain features (demographics and circulating biomarkers and echo-based ventricle metrics) proved more accurate than previous studies using single-domain features alone. Excitingly, HFpEF diagnoses were generally accurate even without echo-based measurements, demonstrating that such algorithms could provide an early screening tool using blood-based measurements before sophisticated imaging.

摘要

动脉高血压可导致心脏结构变化,包括左心室肥厚(LVH),最终导致射血分数保留的心力衰竭(HFpEF)。HFpEF 的初始诊断成本高,通常基于后期重塑;因此,改进的预测性诊断工具具有潜在的临床益处。最近的研究表明,多生物标志物血浆面板对 LVH 和 HFpEF 患者的分类具有预测价值。我们假设机器学习算法可以通过利用更复杂的统计方法来显著提高循环血浆生物标志物的预测价值。在这项工作中,我们针对包括 HFpEF 患者、LVH 患者和参考对照患者在内的 480 名个体人群,开发了一种用于 HFpEF 诊断的集成分类算法。该算法在使用人口统计学信息、与细胞外基质重塑相关的血浆生物标志物和超声心动图数据识别 LVH 患者和 HFpEF 患者时,具有很强的诊断性能,接收者操作特征曲线(ROC)面积分别为 0.92 和 0.90。更令人印象深刻的是,该集成算法仅使用人口统计学和血浆面板数据,HFpEF 的诊断 ROC 面积为 0.88。我们的研究结果表明,基于机器学习的分类算法有望成为 HFpEF 的非侵入性诊断工具,同时还提示了未来机制研究的优先生物标志物,以阐明更具体的调节作用。机器学习算法正确分类出射血分数保留的心力衰竭患者,ROC 曲线下面积超过 90%。使用多域特征(人口统计学和循环生物标志物以及基于回声的心室指标)的分类比以前仅使用单域特征的研究更准确。令人兴奋的是,即使没有基于回声的测量值,HFpEF 的诊断通常也很准确,这表明这些算法可以在复杂成像之前使用基于血液的测量值提供早期筛选工具。

相似文献

1
Ensemble machine learning model identifies patients with HFpEF from matrix-related plasma biomarkers.
Am J Physiol Heart Circ Physiol. 2022 May 1;322(5):H798-H805. doi: 10.1152/ajpheart.00497.2021. Epub 2022 Mar 11.
3
5
Relationship Between Focal and Diffuse Fibrosis Assessed by CMR and Clinical Outcomes in Heart Failure With Preserved Ejection Fraction.
JACC Cardiovasc Imaging. 2019 Nov;12(11 Pt 2):2291-2301. doi: 10.1016/j.jcmg.2018.11.031. Epub 2019 Feb 13.
6
Phenotyping heart failure using model-based analysis and physiology-informed machine learning.
J Physiol. 2021 Nov;599(22):4991-5013. doi: 10.1113/JP281845. Epub 2021 Oct 18.
7
Myocardial hypertrophy and its role in heart failure with preserved ejection fraction.
J Appl Physiol (1985). 2015 Nov 15;119(10):1233-42. doi: 10.1152/japplphysiol.00374.2015. Epub 2015 Jul 16.
9
Machine Learning Analysis of Left Ventricular Function to Characterize Heart Failure With Preserved Ejection Fraction.
Circ Cardiovasc Imaging. 2018 Apr;11(4):e007138. doi: 10.1161/CIRCIMAGING.117.007138.
10
Diagnosis of Heart Failure With Preserved Ejection Fraction: Machine Learning of Spatiotemporal Variations in Left Ventricular Deformation.
J Am Soc Echocardiogr. 2018 Dec;31(12):1272-1284.e9. doi: 10.1016/j.echo.2018.07.013. Epub 2018 Aug 23.

本文引用的文献

1
Artificial intelligence for a personalized diagnosis and treatment of atrial fibrillation.
Am J Physiol Heart Circ Physiol. 2021 Apr 1;320(4):H1337-H1347. doi: 10.1152/ajpheart.00764.2020. Epub 2021 Jan 29.
3
Validation of diagnostic criteria and histopathological characterization of cardiac rupture in the mouse model of nonreperfused myocardial infarction.
Am J Physiol Heart Circ Physiol. 2020 Nov 1;319(5):H948-H964. doi: 10.1152/ajpheart.00318.2020. Epub 2020 Sep 4.
5
End-systolic wall stress in aortic stenosis: comparing symptomatic and asymptomatic patients.
Open Heart. 2019 Apr 9;6(1):e001021. doi: 10.1136/openhrt-2019-001021. eCollection 2019.
6
Phrase mining of textual data to analyze extracellular matrix protein patterns across cardiovascular disease.
Am J Physiol Heart Circ Physiol. 2018 Oct 1;315(4):H910-H924. doi: 10.1152/ajpheart.00175.2018. Epub 2018 May 18.
8
A computational study identifies HIV progression-related genes using mRMR and shortest path tracing.
PLoS One. 2013 Nov 11;8(11):e78057. doi: 10.1371/journal.pone.0078057. eCollection 2013.
9
Biomarkers and diagnostics in heart failure.
Biochim Biophys Acta. 2013 Dec;1832(12):2442-50. doi: 10.1016/j.bbadis.2012.12.014. Epub 2013 Jan 9.
10
Prediction of protein-protein interaction sites by random forest algorithm with mRMR and IFS.
PLoS One. 2012;7(8):e43927. doi: 10.1371/journal.pone.0043927. Epub 2012 Aug 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验