Suppr超能文献

基于发放率的外侧膝状体回路网络建模:皮层反馈对中继细胞时空响应特性的影响。

Firing-rate based network modeling of the dLGN circuit: Effects of cortical feedback on spatiotemporal response properties of relay cells.

机构信息

Centre for Integrative Neuroplasticity, University of Oslo, Oslo, Norway.

Department of Biosciences, University of Oslo, Oslo, Norway.

出版信息

PLoS Comput Biol. 2018 May 17;14(5):e1006156. doi: 10.1371/journal.pcbi.1006156. eCollection 2018 May.

Abstract

Visually evoked signals in the retina pass through the dorsal geniculate nucleus (dLGN) on the way to the visual cortex. This is however not a simple feedforward flow of information: there is a significant feedback from cortical cells back to both relay cells and interneurons in the dLGN. Despite four decades of experimental and theoretical studies, the functional role of this feedback is still debated. Here we use a firing-rate model, the extended difference-of-Gaussians (eDOG) model, to explore cortical feedback effects on visual responses of dLGN relay cells. For this model the responses are found by direct evaluation of two- or three-dimensional integrals allowing for fast and comprehensive studies of putative effects of different candidate organizations of the cortical feedback. Our analysis identifies a special mixed configuration of excitatory and inhibitory cortical feedback which seems to best account for available experimental data. This configuration consists of (i) a slow (long-delay) and spatially widespread inhibitory feedback, combined with (ii) a fast (short-delayed) and spatially narrow excitatory feedback, where (iii) the excitatory/inhibitory ON-ON connections are accompanied respectively by inhibitory/excitatory OFF-ON connections, i.e. following a phase-reversed arrangement. The recent development of optogenetic and pharmacogenetic methods has provided new tools for more precise manipulation and investigation of the thalamocortical circuit, in particular for mice. Such data will expectedly allow the eDOG model to be better constrained by data from specific animal model systems than has been possible until now for cat. We have therefore made the Python tool pyLGN which allows for easy adaptation of the eDOG model to new situations.

摘要

视网膜中的视觉诱发电信号在到达视觉皮层的途中经过背侧膝状体核(dLGN)。然而,这并不是一个简单的信息前馈流:来自皮质细胞的反馈信号显著地返回到 dLGN 中的中继细胞和中间神经元。尽管经过了四十年的实验和理论研究,这种反馈的功能作用仍存在争议。在这里,我们使用一个发放率模型,即扩展的双高斯差异(eDOG)模型,来探索皮质反馈对 dLGN 中继细胞的视觉反应的影响。对于这个模型,通过直接评估二维或三维积分来获得响应,从而可以快速而全面地研究皮质反馈的不同候选组织的潜在影响。我们的分析确定了一种特殊的兴奋和抑制性皮质反馈混合配置,似乎可以最好地解释现有的实验数据。这种配置包括(i)缓慢(长延迟)和广泛的抑制性反馈,与(ii)快速(短延迟)和狭窄的兴奋性反馈相结合,其中(iii)兴奋性/抑制性的 ON-ON 连接分别伴随着抑制性/兴奋性的 OFF-ON 连接,即遵循相位反转的排列。最近发展的光遗传学和药理遗传学方法为更精确地操纵和研究丘脑皮质回路提供了新的工具,特别是对于老鼠。这种数据有望使 eDOG 模型能够比以前仅使用猫的数据更好地受到特定动物模型系统的数据的限制。因此,我们开发了 Python 工具 pyLGN,可以方便地将 eDOG 模型应用于新情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e333/5976212/4e4561348796/pcbi.1006156.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验