Heiberg Thomas, Hagen Espen, Halnes Geir, Einevoll Gaute T
Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway.
Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany.
PLoS Comput Biol. 2016 May 20;12(5):e1004929. doi: 10.1371/journal.pcbi.1004929. eCollection 2016 May.
Despite its prominent placement between the retina and primary visual cortex in the early visual pathway, the role of the dorsal lateral geniculate nucleus (dLGN) in molding and regulating the visual signals entering the brain is still poorly understood. A striking feature of the dLGN circuit is that relay cells (RCs) and interneurons (INs) form so-called triadic synapses, where an IN dendritic terminal can be simultaneously postsynaptic to a retinal ganglion cell (GC) input and presynaptic to an RC dendrite, allowing for so-called triadic inhibition. Taking advantage of a recently developed biophysically detailed multicompartmental model for an IN, we here investigate putative effects of these different inhibitory actions of INs, i.e., triadic inhibition and standard axonal inhibition, on the response properties of RCs. We compute and investigate so-called area-response curves, that is, trial-averaged visual spike responses vs. spot size, for circular flashing spots in a network of RCs and INs. The model parameters are grossly tuned to give results in qualitative accordance with previous in vivo data of responses to such stimuli for cat GCs and RCs. We particularly investigate how the model ingredients affect salient response properties such as the receptive-field center size of RCs and INs, maximal responses and center-surround antagonisms. For example, while triadic inhibition not involving firing of IN action potentials was found to provide only a non-linear gain control of the conversion of input spikes to output spikes by RCs, axonal inhibition was in contrast found to substantially affect the receptive-field center size: the larger the inhibition, the more the RC center size shrinks compared to the GC providing the feedforward excitation. Thus, a possible role of the different inhibitory actions from INs to RCs in the dLGN circuit is to provide separate mechanisms for overall gain control (direct triadic inhibition) and regulation of spatial resolution (axonal inhibition) of visual signals sent to cortex.
尽管背外侧膝状核(dLGN)在早期视觉通路中位于视网膜和初级视觉皮层之间的显著位置,但其在塑造和调节进入大脑的视觉信号方面的作用仍知之甚少。dLGN回路的一个显著特征是中继细胞(RCs)和中间神经元(INs)形成所谓的三联突触,其中一个IN树突末端可以同时作为视网膜神经节细胞(GC)输入的突触后位点和RC树突的突触前位点,从而实现所谓的三联抑制。利用最近开发的针对IN的具有生物物理细节的多房室模型,我们在此研究IN的这些不同抑制作用,即三联抑制和标准轴突抑制,对RCs反应特性的假定影响。我们计算并研究所谓的面积-反应曲线,即RCs和INs网络中圆形闪烁光斑的试验平均视觉尖峰反应与光斑大小的关系。对模型参数进行了大致调整,以使结果在定性上与先前猫GC和RC对这类刺激的体内反应数据一致。我们特别研究了模型成分如何影响显著的反应特性,如RCs和INs的感受野中心大小、最大反应和中心-外周拮抗作用。例如,虽然发现不涉及IN动作电位发放的三联抑制仅对RCs将输入尖峰转换为输出尖峰提供非线性增益控制,但相比之下,轴突抑制被发现会显著影响感受野中心大小:抑制越强,与提供前馈兴奋的GC相比,RC中心大小收缩得越多。因此,dLGN回路中从INs到RCs的不同抑制作用的一个可能作用是为发送到皮层的视觉信号的整体增益控制(直接三联抑制)和空间分辨率调节(轴突抑制)提供单独的机制。