Filimonova Natalia, Specovius-Neugebauer Maria, Friedmann Elfriede
Biology and Medicine Institute Science Educational Center, Taras Shevchenko National University of Kyiv, Volodymyrska St, 60, Kyiv, 01033, Ukraine.
Institute of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany.
Neuroinformatics. 2025 Jan 23;23(2):17. doi: 10.1007/s12021-024-09698-y.
Accurately identifying the timing and frequency characteristics of impulse components in EEG signals is essential but limited by the Heisenberg uncertainty principle. Inspired by the visual system's ability to identify objects and their locations, we propose a new method that integrates a visual system model with wavelet analysis to calculate both time and frequency features of local impulses in EEG signals. We develop a mathematical model based on invariant pattern recognition by the visual system, combined with wavelet analysis using Krawtchouk functions as the mother wavelet. Our method precisely identifies the localization and frequency characteristics of the impulse components in EEG signals. Tested on task-related EEG data, it accurately detected blink components (0.5 to 1 Hz) and separated muscle artifacts (16 Hz). It also identified muscle response durations (298 ms) within the 1 to 31 Hz range in emotional reaction studies, offering insights into both individual and typical emotional responses. We further illustrated how the new method circumvents the uncertainty principle in low-frequency wavelet analysis. Unlike classical wavelet analysis, our method provides spectral characteristics of EEG impulses invariant to time shifts, improving the identification and classification of EEG components.
准确识别脑电图(EEG)信号中脉冲成分的时间和频率特征至关重要,但受到海森堡不确定性原理的限制。受视觉系统识别物体及其位置能力的启发,我们提出了一种将视觉系统模型与小波分析相结合的新方法,以计算EEG信号中局部脉冲的时间和频率特征。我们基于视觉系统的不变模式识别开发了一个数学模型,并结合使用克劳特楚克函数作为母小波的小波分析。我们的方法精确地识别了EEG信号中脉冲成分的定位和频率特征。在与任务相关的EEG数据上进行测试时,它准确地检测到眨眼成分(0.5至1赫兹)并分离出肌肉伪迹(16赫兹)。它还在情绪反应研究中识别出1至31赫兹范围内的肌肉反应持续时间(298毫秒),为个体和典型情绪反应提供了见解。我们进一步说明了新方法如何在低频小波分析中规避不确定性原理。与经典小波分析不同,我们的方法提供了对时间偏移不变的EEG脉冲频谱特征,改进了EEG成分的识别和分类。