Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America.
Department of Physics, University of Notre Dame, Notre Dame, IN, United States of America.
PLoS One. 2018 May 17;13(5):e0197241. doi: 10.1371/journal.pone.0197241. eCollection 2018.
Increasing evidence shows that active sites of proteins have non-trivial conformational dynamics. These dynamics include active site residues sampling different local conformations that allow for multiple, and possibly novel, inhibitor binding poses. Yet, active site dynamics garner only marginal attention in most inhibitor design efforts and exert little influence on synthesis strategies. This is partly because synthesis requires a level of atomic structural detail that is frequently missing in current characterizations of conformational dynamics. In particular, while the identity of the mobile protein residues may be clear, the specific conformations they sample remain obscure. Here, we show how an appropriate choice of ligand can significantly sharpen our abilities to describe the interconverting binding poses (conformations) of protein active sites. Specifically, we show how 2-(2'-carboxyphenyl)-benzoyl-6-aminopenicillanic acid (CBAP) exposes otherwise hidden dynamics of a protein active site that binds β-lactam antibiotics. When CBAP acylates (binds) the active site serine of the β-lactam sensor domain of BlaR1 (BlaRS), it shifts the time scale of the active site dynamics to the slow exchange regime. Slow exchange enables direct characterization of inter-converting protein and bound ligand conformations using NMR methods. These methods include chemical shift analysis, 2-d exchange spectroscopy, off-resonance ROESY of the bound ligand, and reduced spectral density mapping. The active site architecture of BlaRS is shared by many β-lactamases of therapeutic interest, suggesting CBAP could expose functional motions in other β-lactam binding proteins. More broadly, CBAP highlights the utility of identifying chemical probes common to structurally homologous proteins to better expose functional motions of active sites.
越来越多的证据表明,蛋白质的活性部位具有重要的构象动力学。这些动力学包括活性部位残基采样不同的局部构象,从而允许多种(可能是新颖的)抑制剂结合构象。然而,在大多数抑制剂设计工作中,活性部位动力学只得到了微不足道的关注,对合成策略的影响也很小。部分原因是合成需要一定程度的原子结构细节,而目前对构象动力学的描述往往缺乏这种细节。特别是,虽然移动蛋白质残基的身份可能很明确,但它们采样的具体构象仍然不清楚。在这里,我们展示了如何选择合适的配体可以显著提高我们描述蛋白质活性部位相互转化的结合构象(构象)的能力。具体来说,我们展示了 2-(2'-羧基苯基)-苯甲酰基-6-氨基青霉烷酸(CBAP)如何暴露了与β-内酰胺抗生素结合的蛋白质活性部位的隐藏动力学。当 CBAP 酰化(结合)BlaR1(BlaRS)的β-内酰胺感应结构域的活性部位丝氨酸时,它将活性部位动力学的时间尺度转移到慢交换区域。慢交换使使用 NMR 方法直接表征相互转化的蛋白质和结合配体构象成为可能。这些方法包括化学位移分析、2-d 交换光谱学、结合配体的非共振 ROESY 和减少的谱密度映射。BlaRS 的活性部位结构与许多具有治疗意义的β-内酰胺酶共享,这表明 CBAP 可以揭示其他β-内酰胺结合蛋白的功能运动。更广泛地说,CBAP 强调了识别结构同源蛋白中常见的化学探针以更好地揭示活性部位功能运动的实用性。