Suppr超能文献

使用格林函数热核从高强度聚焦超声声处理中估计 3D 特定吸收率。

3D-specific absorption rate estimation from high-intensity focused ultrasound sonications using the Green's function heat kernel.

机构信息

Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, 84108, USA.

出版信息

Med Phys. 2018 Jul;45(7):3109-3119. doi: 10.1002/mp.12978. Epub 2018 Jun 15.

Abstract

PURPOSE

To evaluate a numerical inverse Green's function method for deriving specific absorption rates (SARs) from high-intensity focused ultrasound (HIFU) sonications using tissue parameters (thermal conductivity, specific heat capacity, and mass density) and three-dimensional (3D) magnetic resonance imaging (MRI) temperature measurements.

METHODS

SAR estimates were evaluated using simulations and MR temperature measurements from HIFU sonications. For simulations, a "true" SAR was calculated using the hybrid angular spectrum method for ultrasound simulations. This "true" SAR was plugged into a Pennes bioheat transfer equation (PBTE) solver to provide simulated temperature maps, which were then used to calculate the SAR estimate using the presented method. Zero mean Gaussian noise, corresponding to temperature precisions between 0.1 and 2.0°C, was added to the temperature maps to simulate a variety of in vivo situations. Experimental MR temperature maps from HIFU sonications in a gelatin phantom monitored with a 3D segmented echo planar imaging MRI pulse sequence were also used. To determine the accuracy of the simulated and phantom data, we reconstructed temperature maps by plugging in the estimated SAR to the PBTE solver. In both simulations and phantom experiments, the presented method was compared to two previously published methods of determining SAR, a linear and an analytical method. The presented numerical method utilized the full 3D data simultaneously, while the two previously published methods work on a slice-by-slice basis.

RESULTS

In the absence of noise, SAR distribution estimates obtained from the simulated heating profiles match closely (within 10%) to the initial true SAR distribution. The resulting temperature distributions also match closely to the corresponding initial temperature distributions (<0.2°C RMSE). In the presence of temperature measurement noise, the SAR distributions have noise amplified by the inverse convolution process, while the resulting temperature distributions still match closely to the initial "true" temperature distributions. In general, temperature RMSE was observed to be approximately 20-30% higher than the level of the added noise. By contrast, the previously published linear method is less sensitive to noise, but significantly underpredicts the SAR. The analytic method is also less sensitive to noise and matches SAR in the central plane, but greatly underpredicts in the longitudinal direction. Similar observations are made from the phantom studies. The described numerical inverse Green's function method is very fast - at least two orders of magnitude faster than the compared methods.

CONCLUSION

The presented numerical inverse Green's function method is computationally fast and generates temperature maps with high accuracy. This is true despite generally overestimating the true SAR and amplifying the input noise.

摘要

目的

评估一种数值反格林函数方法,通过使用组织参数(热导率、比热容和质量密度)和三维(3D)磁共振成像(MRI)温度测量值,从高强度聚焦超声(HIFU)声处理中得出特定吸收率(SAR)。

方法

使用 HIFU 声处理的模拟和 MR 温度测量值来评估 SAR 估计值。对于模拟,使用超声模拟的混合角谱方法计算“真实”SAR。将此“真实”SAR 插入 Pennes 生物传热方程(PBTE)求解器中,以提供模拟温度图,然后使用所提出的方法使用这些模拟温度图来计算 SAR 估计值。向温度图中添加零均值高斯噪声,对应于 0.1 到 2.0°C 之间的温度精度,以模拟各种体内情况。还使用在明胶体模中进行的 HIFU 声处理的实验性 MR 温度图,这些温度图使用 3D 分段回波平面成像 MRI 脉冲序列进行监测。为了确定模拟和体模数据的准确性,我们通过将估计的 SAR 插入到 PBTE 求解器中,重建温度图。在模拟和体模实验中,将所提出的方法与两种先前发表的 SAR 确定方法(线性和分析方法)进行比较。所提出的数值方法同时利用完整的 3D 数据,而两种先前发表的方法则基于切片进行工作。

结果

在没有噪声的情况下,从模拟加热曲线中获得的 SAR 分布估计值与初始真实 SAR 分布非常吻合(相差 10%以内)。所得的温度分布也与相应的初始温度分布非常吻合(<0.2°C RMSE)。在存在温度测量噪声的情况下,SAR 分布通过逆卷积过程放大了噪声,而所得的温度分布仍与初始“真实”温度分布非常吻合。通常,温度 RMSE 观察到比添加的噪声高约 20-30%。相比之下,先前发表的线性方法对噪声的敏感性较低,但对 SAR 的预测明显较低。分析方法对噪声的敏感性也较低,并且在中央平面上匹配 SAR,但在纵向方向上大大低估了 SAR。从体模研究中也得到了类似的观察结果。所描述的数值反格林函数方法非常快速-至少比比较方法快两个数量级。

结论

所提出的数值反格林函数方法计算速度快,生成的温度图具有高精度。尽管通常会高估真实 SAR 并放大输入噪声,但事实确实如此。

相似文献

3
A Green's function approach to local rf heating in interventional MRI.
Med Phys. 2001 May;28(5):826-32. doi: 10.1118/1.1367860.
5
Evaluation of acoustic-thermal simulations of in vivo magnetic resonance guided focused ultrasound ablative therapy.
Int J Hyperthermia. 2024;41(1):2301489. doi: 10.1080/02656736.2023.2301489. Epub 2024 Jan 17.
6
The accuracy and precision of two non-invasive, magnetic resonance-guided focused ultrasound-based thermal diffusivity estimation methods.
Int J Hyperthermia. 2014 Sep;30(6):362-71. doi: 10.3109/02656736.2014.945497. Epub 2014 Sep 8.
7
Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.
Int J Hyperthermia. 2016 Nov;32(7):723-34. doi: 10.1080/02656736.2016.1216184. Epub 2016 Aug 8.
9
MR thermometry for focused ultrasound monitoring utilizing model predictive filtering and ultrasound beam modeling.
J Ther Ultrasound. 2016 Sep 22;4:23. doi: 10.1186/s40349-016-0067-6. eCollection 2016.
10
An analytical solution for improved HIFU SAR estimation.
Phys Med Biol. 2012 Jul 21;57(14):4527-44. doi: 10.1088/0031-9155/57/14/4527. Epub 2012 Jun 22.

引用本文的文献

1
Using the Tissue Impulse Response Function to Streamline Fractionated MRgFUS-Induced Hyperthermia.
Cancers (Basel). 2025 Feb 4;17(3):515. doi: 10.3390/cancers17030515.

本文引用的文献

1
Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.
Int J Hyperthermia. 2016 Nov;32(7):723-34. doi: 10.1080/02656736.2016.1216184. Epub 2016 Aug 8.
4
Characterization and evaluation of tissue-mimicking gelatin phantoms for use with MRgFUS.
J Ther Ultrasound. 2015 Jun 16;3:9. doi: 10.1186/s40349-015-0030-y. eCollection 2015.
5
Noninvasive, in vivo determination of uterine fibroid thermal conductivity in MRI-guided high intensity focused ultrasound therapy.
J Magn Reson Imaging. 2015 Jun;41(6):1654-61. doi: 10.1002/jmri.24724. Epub 2014 Aug 27.
6
Effects of MRTI sampling characteristics on estimation of HIFU SAR and tissue thermal diffusivity.
Phys Med Biol. 2013 Oct 21;58(20):7291-307. doi: 10.1088/0031-9155/58/20/7291. Epub 2013 Sep 27.
7
An analytical solution for improved HIFU SAR estimation.
Phys Med Biol. 2012 Jul 21;57(14):4527-44. doi: 10.1088/0031-9155/57/14/4527. Epub 2012 Jun 22.
9
Temporally constrained reconstruction applied to MRI temperature data.
Magn Reson Med. 2009 Aug;62(2):406-19. doi: 10.1002/mrm.22012.
10
Ultrasound beam propagation using the hybrid angular spectrum method.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2526-9. doi: 10.1109/IEMBS.2008.4649714.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验