Suppr超能文献

用于磁共振引导聚焦超声(MRgFUS)的组织模拟明胶体模的表征与评估

Characterization and evaluation of tissue-mimicking gelatin phantoms for use with MRgFUS.

作者信息

Farrer Alexis I, Odéen Henrik, de Bever Joshua, Coats Brittany, Parker Dennis L, Payne Allison, Christensen Douglas A

机构信息

Department of Bioengineering, University of Utah, Salt Lake City, UT USA ; Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT USA.

Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT USA ; Department of Physics and Astronomy, University of Utah, Salt Lake City, UT USA.

出版信息

J Ther Ultrasound. 2015 Jun 16;3:9. doi: 10.1186/s40349-015-0030-y. eCollection 2015.

Abstract

BACKGROUND

A tissue-mimicking phantom that accurately represents human-tissue properties is important for safety testing and for validating new imaging techniques. To achieve a variety of desired human-tissue properties, we have fabricated and tested several variations of gelatin phantoms. These phantoms are simple to manufacture and have properties in the same order of magnitude as those of soft tissues. This is important for quality-assurance verification as well as validation of magnetic resonance-guided focused ultrasound (MRgFUS) treatment techniques.

METHODS

The phantoms presented in this work were constructed from gelatin powders with three different bloom values (125, 175, and 250), each one allowing for a different mechanical stiffness of the phantom. Evaporated milk was used to replace half of the water in the recipe for the gelatin phantoms in order to achieve attenuation and speed of sound values in soft tissue ranges. These acoustic properties, along with MR (T1 and T2*), mechanical (density and Young's modulus), and thermal properties (thermal diffusivity and specific heat capacity), were obtained through independent measurements for all three bloom types to characterize the gelatin phantoms. Thermal repeatability of the phantoms was also assessed using MRgFUS and MR thermometry.

RESULTS

All the measured values fell within the literature-reported ranges of soft tissues. In heating tests using low-power (6.6 W) sonications, interleaved with high-power (up to 22.0 W) sonications, each of the three different bloom phantoms demonstrated repeatable temperature increases (10.4 ± 0.3 °C for 125-bloom, 10.2 ± 0.3 °C for 175-bloom, and 10.8 ± 0.2 °C for 250-bloom for all 6.6-W sonications) for heating durations of 18.1 s.

CONCLUSION

These evaporated milk-modified gelatin phantoms should serve as reliable, general soft tissue-mimicking MRgFUS phantoms.

摘要

背景

一种能准确模拟人体组织特性的仿组织体模对于安全测试和验证新的成像技术很重要。为了实现多种所需的人体组织特性,我们制作并测试了几种不同的明胶体模。这些体模制作简单,其特性与软组织特性处于同一数量级。这对于质量保证验证以及磁共振引导聚焦超声(MRgFUS)治疗技术的验证都很重要。

方法

本研究中呈现的体模由具有三种不同勃氏值(125、175和250)的明胶粉制成,每种勃氏值对应不同机械硬度的体模。用蒸发乳替代明胶体模配方中一半的水,以实现软组织范围内的衰减和声速值。通过对所有三种勃氏类型进行独立测量,获得了这些声学特性以及磁共振(T1和T2*)、机械(密度和杨氏模量)和热学特性(热扩散率和比热容),以表征明胶体模。还使用MRgFUS和磁共振测温法评估了体模的热重复性。

结果

所有测量值均落在文献报道的软组织范围内。在使用低功率(6.6 W)超声与高功率(高达22.0 W)超声交替进行的加热测试中,三种不同勃氏值的体模在18.1秒的加热持续时间内均表现出可重复的温度升高(对于所有6.6 W超声,125 - 勃氏值体模为10.4 ± 0.3 °C,175 - 勃氏值体模为10.2 ± 0.3 °C,250 - 勃氏值体模为10.8 ± 0.2 °C)。

结论

这些蒸发乳改性明胶体模应可作为可靠的、通用的模拟软组织的MRgFUS体模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21a5/4490606/584ad9e65069/40349_2015_30_Fig1_HTML.jpg

相似文献

1
Characterization and evaluation of tissue-mimicking gelatin phantoms for use with MRgFUS.
J Ther Ultrasound. 2015 Jun 16;3:9. doi: 10.1186/s40349-015-0030-y. eCollection 2015.
2
Characterization of a soft tissue-mimicking agar/wood powder material for MRgFUS applications.
Ultrasonics. 2021 May;113:106357. doi: 10.1016/j.ultras.2021.106357. Epub 2021 Jan 30.
4
Acoustic and thermal characterization of agar based phantoms used for evaluating focused ultrasound exposures.
J Ther Ultrasound. 2017 Jun 1;5:14. doi: 10.1186/s40349-017-0093-z. eCollection 2017.
6
MR relaxation properties of tissue-mimicking phantoms.
Ultrasonics. 2022 Feb;119:106600. doi: 10.1016/j.ultras.2021.106600. Epub 2021 Oct 4.
7
Thermal diffusivity and perfusion constants from in vivo MR-guided focussed ultrasound treatments: a feasibility study.
Int J Hyperthermia. 2018 Jun;34(4):352-362. doi: 10.1080/02656736.2017.1340677. Epub 2017 Jun 26.
8
MR relaxation times of agar-based tissue-mimicking phantoms.
J Appl Clin Med Phys. 2022 May;23(5):e13533. doi: 10.1002/acm2.13533. Epub 2022 Apr 12.
10
High-resolution acoustic mapping of tunable gelatin-based phantoms for ultrasound tissue characterization.
Front Bioeng Biotechnol. 2024 Feb 22;12:1276143. doi: 10.3389/fbioe.2024.1276143. eCollection 2024.

引用本文的文献

1
Acoustic Wave Propagation Behaviors and Energy Loss Mechanisms in Agar Gels with Small Particles.
Polymers (Basel). 2025 Aug 15;17(16):2226. doi: 10.3390/polym17162226.
2
Use of Secondary Reflectors for Enhanced ESWT Treatment of the Penis.
Biomedicines. 2025 Aug 13;13(8):1967. doi: 10.3390/biomedicines13081967.
3
Delivery of Cavitation Therapy With a Modified Clinical Scanner: In Vitro Evaluation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2025 Mar;72(3):351-361. doi: 10.1109/TUFFC.2025.3536932. Epub 2025 Mar 17.
4
Design of a wasp-inspired biopsy needle capable of self-propulsion and friction-based tissue transport.
Front Bioeng Biotechnol. 2025 Jan 6;12:1497221. doi: 10.3389/fbioe.2024.1497221. eCollection 2024.
5
Machine learning models based on FEM simulation of hoop mode vibrations to enable ultrasonic cuffless measurement of blood pressure.
Med Biol Eng Comput. 2025 May;63(5):1413-1426. doi: 10.1007/s11517-024-03268-9. Epub 2025 Jan 6.
6
Overview of Therapeutic Ultrasound Applications and Safety Considerations: 2024 Update.
J Ultrasound Med. 2025 Mar;44(3):381-433. doi: 10.1002/jum.16611. Epub 2024 Nov 11.
7
Agar-based Phantom for Evaluating Targeting of High-intensity Focused Ultrasound Systems for Breast Ablation.
J Med Phys. 2024 Jul-Sep;49(3):343-355. doi: 10.4103/jmp.jmp_52_24. Epub 2024 Sep 21.
8
Estimation of the Proton Resonance Frequency Coefficient in Agar-based Phantoms.
J Med Phys. 2024 Apr-Jun;49(2):167-180. doi: 10.4103/jmp.jmp_146_23. Epub 2024 Jun 25.
9
High-quality Agar and Polyacrylamide Tumor-mimicking Phantom Models for Magnetic Resonance-guided Focused Ultrasound Applications.
J Med Ultrasound. 2023 Oct 27;32(2):121-133. doi: 10.4103/jmu.jmu_68_23. eCollection 2024 Apr-Jun.
10
Evaluation of acoustic-thermal simulations of in vivo magnetic resonance guided focused ultrasound ablative therapy.
Int J Hyperthermia. 2024;41(1):2301489. doi: 10.1080/02656736.2023.2301489. Epub 2024 Jan 17.

本文引用的文献

1
A simulation technique for 3D MR-guided acoustic radiation force imaging.
Med Phys. 2015 Feb;42(2):674-84. doi: 10.1118/1.4905040.
2
Trans-cranial focused ultrasound without hair shaving: feasibility study in an ex vivo cadaver model.
J Ther Ultrasound. 2014 Jan 2;1:24. doi: 10.1186/2050-5736-1-24. eCollection 2013.
3
Treatment envelope evaluation in transcranial magnetic resonance-guided focused ultrasound utilizing 3D MR thermometry.
J Ther Ultrasound. 2014 Oct 16;2:19. doi: 10.1186/2050-5736-2-19. eCollection 2014.
4
A pilot study of focused ultrasound thalamotomy for essential tremor.
N Engl J Med. 2013 Aug 15;369(7):640-8. doi: 10.1056/NEJMoa1300962.
5
MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study.
Lancet Neurol. 2013 May;12(5):462-8. doi: 10.1016/S1474-4422(13)70048-6. Epub 2013 Mar 21.
7
High intensity focused ultrasound (HIFU) for prostate cancer: current clinical status, outcomes and future perspectives.
Int J Hyperthermia. 2010;26(8):796-803. doi: 10.3109/02656736.2010.498803. Epub 2010 Sep 30.
8
Muscle shear elastic modulus measured using supersonic shear imaging is highly related to muscle activity level.
J Appl Physiol (1985). 2010 May;108(5):1389-94. doi: 10.1152/japplphysiol.01323.2009. Epub 2010 Feb 18.
9
The effect of substrate stiffness on adult neural stem cell behavior.
Biomaterials. 2009 Dec;30(36):6867-78. doi: 10.1016/j.biomaterials.2009.09.002. Epub 2009 Sep 23.
10
Pain palliation in patients with bone metastases using MR-guided focused ultrasound surgery: a multicenter study.
Ann Surg Oncol. 2009 Jan;16(1):140-6. doi: 10.1245/s10434-008-0011-2. Epub 2008 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验